Problem operacjonizmu z definicją czasu w mechanice kwantowej
DOI:
https://doi.org/10.14394/filnau.2023.0006Słowa kluczowe:
operationalism, Percy Bridgman, operational definition, time, problem of time, quantum mechanicsAbstrakt
Bridgman’s operationalism imposes a set of methodological requirements on its proponents, which become untenable when applied to the definition of time within the formalism of non-relativistic quantum mechanics. This paper explores the operational definition of time and investigates how far it can be aligned with the core principles of operationalism. To this end, Busch’s (2008) framework, which distinguishes three roles of time in the quantum mechanical formalism, is employed. One of these roles introduces demands that operationalism cannot meet without compromising its essential principles. As a result, it seems reasonable to conclude that operationalism and quantum mechanics are incompatible (at least in the context of the problem of time in quantum mechanics).
Bibliografia
Aharonov Y., Bohm D. (1961), Time in the Quantum Theory and the Uncertainty Relation for Time and Energy, „Physical Review D” 122(1), 1649–1658. https://doi.org/10.1103/PhysRev.122.1649
Aharonov Y., Oppenheim J., Popescu S., Reznik B., Unruh W. (1998), Measurement of Time of Arrival in Quantum Mechanics, „Physical Review A” 57(6), 4130–4139. https://doi.org/10.1103/PhysRevA.57.4130
Anderson E. (2017), The Problem of Time: Quantum Mechanics Versus General Relativity, Cham: Springer. https://doi.org/10.1007/978-3-319-58848-3
Bauer M. (1983), A Time Operator in Quantum Mechanics, „Annals of Physics” 150(1), 1–21. https://doi.org/0003-4916(83)90002-7
Bridgman P. W. (1954), Remarks on the Present State of Operationalism, „The Scientific Monthly” 79(4), 224–226.
Bridgman P. W. (1958), The Logic of Modern Physics, New York: The Macmillan Company.
Bridgman P. W. (1959a), P. W. Bridgman’s „The Logic of Modern Physics” after Thirty Years, „Daedalus” 88(3), 518–526.
Bridgman P. W. (1959b), The Way Things Are, Cambridge, Mass.: Harvard University Press.
Busch P. (2008), The Time–Energy Uncertainty Relation, [w:] Time in Quantum Mechanics, J. G. Muga, R. Sala Mayato, Í. Egusquiza (red.), Berlin–Heidelberg: Springer, 73–105. https://doi.org/10.1007/978-3-540-73473-4_3
Busch P., Grabowski M., Lahti P. J. (2009), Operational Quantum Physics, Berlin–Heidelberg: Springer. https://doi.org/10.1007/978-3-540-49239-9
Das S., Struyve W. (2021), Questioning the Adequacy of Certain Quantum Arrival-Time Distributions, „Physical Review A” 104(042214), 1–7. https://doi.org/10.1103/PhysRevA.104.042214
Delgado V., Muga J. G. (1997), Arrival Time in Quantum Mechanics, „Physical Review A – Atomic, Molecular, and Optical Physics” 56(5), 3425–3435. https://doi.org/10.1103/PhysRevA.56.3425
Egusquiza Í. L., Muga J. G., Baute A. D. (2008), „Standard Quantum-Mechanical Approach to Times of Arrival”, [w:] Time in Quantum Mechanics, J. G. Muga, R. S. Mayato, Í. Egusquiza (red.), Berlin–Heidelberg: Springer, 305–332. https://doi.org/10.1007/978-3-540-73473-4_10
Field G. E. (2022), On the Status of Quantum Tunnelling Time, „European Journal for Philosophy of Science” 12(4), 1–30. https://doi.org/10.1007/s13194-022-00483-9
Galapon E. A. (2002a), Pauli’s Theorem and Quantum Canonical Pairs: The Consistency of a Bounded, Self-adjoint Time Operator Canonically Conjugate to a Hamiltonian with Non-empty Point Spectrum, „Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences” 458(2018), 451–472. https://doi.org/10.1098/rspa.2001.0874
Galapon E. A. (2002b), Self-adjoint Time Operator is the Rule for DiscreteSemi-bounded Hamiltonians, „Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences” 458(2027), 2671–2689. https://doi.org/10.1098/rspa.2002.0992
Giannitrapani R. (1997), Positive-Operator-Valued Time Observable in Quantum Mechanics, „International Journal of Theoretical Physics” 36, 1575–1584. https://doi.org/10.1007/BF02435757
Gillies D. A. (1972), Operationalism, „Synthese” 25, 1–24. https://doi.org/10.1007/BF00484997
Gisin N., Cruzeiro E. Z. (2018), Quantum Measurements, Energy Conservation and Quantum Clocks, „Annalen der Physik” 530(6), 1–10. https://doi.org/10.1002/andp.201700388
Gnanapragasam B., Srinivas M. (1979), Uncertainty Relation for Successive Measurements, „Pramana” 12, 699–705. https://doi.org/10.1007/BF02846858
Góźdź A., Góźdź M., Pędrak A. (2023), Quantum Time and Quantum Evolution, „Universe” 9(6), 1–31. https://doi.org/10.3390/universe9060256
Grace R. C. (2001), On the Failure of Operationism, „Theory & Psychology” 11(1), 5–33.
Grot N., Rovelli C., Tate R. S. (1996), Time-of-Arrival in Quantum Mechanics, „Physical Review A – Atomic, Molecular, and Optical Physics” 54(6), 4676–4690. https://doi.org/10.1103/PhysRevA.54.4676
Halvorson H. (2010), Does Quantum Theory Kill Time?, https://philarchive.org/archive/HALDQT
Hauge E., Støvneng J. (1989), Tunneling Times: A Critical Review, „Reviews of Modern Physics” 61(4), 917–936. https://doi.org/10.1103/RevModPhys.61.917
Hilgevoord J. (2002), Time in Quantum Mechanics, „American Journal of Physics” 70(3), 301–306. https://doi.org/10.1119/1.1430697
Horwitz L. P. (2006), On the Significance of a Recent Experiment Demonstrating Quantum Interference in Time, „Physics Letters A” 355(1), 1–6. https://doi.org/10.1016/j.physleta.2006.01.097
Kijowski J. (1974), On the Time Operator in Quantum Mechanics and the Heisenberg Uncertainty Relation for Energy and Time, „Reports on Mathematical Physics” 6(3), 361–386. https://doi.org/10.1016/S0034-4877(74)80004-2
Koch S. (1992), Psychology’s Bridgman vs Bridgman’s Bridgman, „Theory & Psychology” 2(3), 261–290. https://doi.org/10.1007/978-3-663-11198-6_8
Kochański P., Wódkiewicz K. (1999), Operational Time of Arrival in Quantum Phase Space, „Physical Review A” 60(4), 2689–2699. https://doi.org/10.1103/PhysRevA.60.2689
Leavens C. R. (2002), On the “Standard” Quantum Mechanical Approach to Times of Arrival, „Physics Letters A” 303(2-3), 154–165. https://doi.org/10.1016/S0375-9601(02)01239-2
Lindsay R. B. (1937), A Critique of Operationalism in Physics, „Philosophy of Science” 4(4), 456–470. https://doi.org/10.1086/286477
Mandelstam L., Tamm I. (1991), The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics, [w:] Selected Papers, B. Bolotovskii, V. Frenkel, R. Peierls (red.), Berlin–Heidelberg: Springer, 115–123. https://doi.org/10.1007/978-3-642-74626-0_8
Muga J. G., Leavens C. R. (2000), Arrival Time in Quantum Mechanics, „Physics Report” 338(4), 353–438. https://doi.org/10.1016/S0370-1573(00)00047-8
Muga J. G., Leavens C. R., Palao J. (1998), Space-Time Properties of Free-Motion Time-of-Arrival Eigenfunctions, „Physical Review A” 58(6), 4336. https://doi.org/10.1103/physreva.58.4336
Pauli W. (1980), General Principles of Quantum Mechanics, Berlin–Heidelberg: Springer. https://doi.org/10.1007/978-3-642-61840-6
Peres A. (1980), Measurement of Time by Quantum Clocks, „American Journal of Physics” 48(7), 552–557. https://doi.org/10.1119/1.12061
Przełęcki M. (1955), O tzw. definicjach operacyjnych, „Studia Logica: An International Journal for Symbolic Logic” 3, 125–183.
Ramos R., Spierings D., Racicot I., Steinberg A. (2020), Measurement of the Time Spent by a Tunnelling Atom within the Barrier Region, „Nature” 583(7817), 529–532. https://doi.org/10.1038/s41586-020-2490-7
Razavy M. (1971), Time of Arrival Operator, „Canadian Journal of Physics” 49(24), 3075–3081. https://doi.org/10.1139/p71-367
Ribes-Iñesta E. (2003), What Is Defined in Operational Definitions? The Case of Operant Psychology, „Behavior and Philosophy” 31(2003), 111–126.
Robertson H. P. (1929), The Uncertainty Principle, „Physical Review” 34, 163–164. https://doi.org/10.1103/PhysRev.34.163
Róg J. (2023), Krytyka operacjonizmu z uwzględnieniem operacyjnej definicji czasu, „Roczniki Filozoficzne” 71(3), 231–250. https://doi.org/10.18290/rf23713.11
Stevens S. S. (1935), The Operational Definition of Psychological Concepts, „Psychological Review” 42(6), 517–527. https://doi.org/10.1037/h0056973
Vessonen E. (2021), Respectful Operationalism, „Theory & Psychology” 31(1), 84–105.
Wang Z.-Y., Chen B., Xiong C.-D. (2003), Time in Quantum Mechanics and Quantum Field Theory, „Journal of Physics A: Mathematical and General” 36(18), 5135–5148. https://doi.org/10.1088/0305-4470/36/18/317
Wang Z.-Y., Xiong C.-D. (2007), How to Introduce Time Operator, „Annals of Physics” 322(10), 2304–2314. https://doi.org/10.1016/j.aop.2006.10.007
Werner R. (1987), Arrival Time Observables in Quantum Mechanics, „Annales de l’Institut Henri Poincaré série A – physique théorique” 47(4), 429–449.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2023 Jakub Róg
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.