Visual Thinking and the Socio-Historical Aspects of Richard Dedekind’s Contributions to the Foundations of Mathematics

Autor

DOI:

https://doi.org/10.14394/filnau.2023.0012

Słowa kluczowe:

Richard Dedekind, real numbers, natural numbers, PMP, philosophy of mathematical practice, visual thinking, socio-historical practices

Abstrakt

This paper presents a new interpretation of Dedekind’s philosophy of mathematics, based on an analysis of a selected part of his mathematical practice. The article consists of three parts. In the first part, I describe selected interpretations of Dedekind’s philosophy of mathematics, such as fictionalism, creationism, or realism on the one hand, and the ontology of the intentional object or structuralism on the other. In the second part, I introduce the tools and methods that I use in the third part of the article, such as Giaquinto’s proposed use of visual thinking in mathematical practice, as well as the socio-historical perspective of the development of mathematical knowledge. I also explain why a perspective of the philosophy of mathematical practice is useful here. In the last part of the article, I analyze how Dedekind introduced two number systems and present a new and original suggestion for the interpretation of his philosophy.
The main object of the research is Dedekind’s mathematical texts and the mathematical concepts and objects they describe, but I also try to reinterpret the non-mathematical statements contained in these texts. Finally, I argue that in addition to certain “technical” arguments that can be made against fictionalism, realism, and creationism in Dedekind’s case, the interpretation presented here
can also be used as an argument from the perspective of cognitive psychology and the socio-historical perspective of mathematical practices.

Bibliografia

Bender E. A. (1942), An Introduction to Mathematical Modeling, New York: Wiley-Interscience Publication, John Wiley & Sons.

Błaszczyk P. (2005), On the Mode of Existence of the Real Numbers, [in:] Logos of Phenomenology and Phenomenology of the Logos (Analecta Husserliana, Vol. 88), A.-T. Tymieniecka (ed.), Dordrecht: Springer, 137–155.

Błaszczyk P. (2007), Analiza filozoficzna rozprawy Richarda Dedekinda ”Stetigkeit und irrationale Zahlen”, Kraków: Wydawnictwo Naukowe Akademii Pedagogicznej.

Błaszczyk P. (2012), “O ciałach uporządkowanych,” Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia IV, 15–30.

Błaszczyk P. and Fila M. (2020), Modes of Continuity in Diagram for Intermediate Value Theorem, [in:] Diagrammatic Representation and Inference, A.-V. Pietarinen, S. Linker, P. Chapman, J. Corter, V. Giardino, and L. Bosveld-de Smet (eds.), Cham: Springer, 34–49.

Błaszczyk P. and Fila M. (2024), On Bolzano and Greek Concepts of Continuity, [in:] Handbook of the History and Philosophy of Mathematical Practice, B. Sriraman (ed.), Cham: Springer, 1563–1594.

Bridges D., Palmgren E., and Ishihara H. (2022), Constructive Mathematics, [in:] The Stanford Encyclopedia of Philosophy, E. N. Zalta and U. Nodelman (eds.), https://plato.stanford.edu/entries/mathematics-constructive/.

Brożek A. (2022), “Rekonstrukcja pojęć w Szkole Lwowsko-Warszawskiej. Teoria i praktyka,” Roczniki Filozoficzne LXX(2), 155–179. https://doi.org/10.18290/rf2202.9

Burgess J. (2004), “Mathematics and Bleak House,” Philosophia Mathematica 12, 37–53.

Carter J. (2004), “Ontology and Mathematical Practice,” Philosophia Mathematica 12(3), 244–266. https://doi.org/10.1093/philmat/12.3.244

Carter J. (2008), “Structuralism as a Philosophy of Mathematical Practice,” Synthese 163, 119–131. https://doi.org/10.1007/s11229-007-9169-6

Carter J. (2019), “Philosophy of Mathematical Practice – Motivations, Themes and Prospects,” Philosophia Mathematica 27(1), 1–32. https://doi.org/10.1093/philmat/nkz002

Carter J. (2022), “Mathematical Practice, Fictionalism and Social Ontology,” Topoi 42. https://doi.org/10.1007/s11245-022-09856-4

Charmaz K. (2006), Constructing Grounded Theory, London–Thousand Oaks, CA: Sage Publications.

Chateaubriand O. (2012), “The Ontology of Mathematical Practice,” Notae Philosophicae Scientiae Formalis 1(1), 80–88.

Cole J. C. (2009), “Creativity, Freedom, and Authority: A New Perspective on the Metaphysics of Mathematics,” Australasian Journal of Philosophy 87(4), 589–608. https://doi.org/10.1080/00048400802598629

Corry L. (2004), Richard Dedekind: Numbers and Ideals, [in:] Modern Algebra and the Rise of Mathematical Structures, Boston: Birkhäuser, 66–136.

Dadaczyński J. (2000), Filozofia matematyki w ujęciu historycznym, Kraków–Tarnów: OBI Biblos.

Dadaczyński J. (2012), “Arytmetyka u początku abstrakcyjnego pojmowania geometrii przez Hilberta,” Filozofia Nauki (The Philosophy of Science) 20(3), 99–109.

Dedekind R. (1872), Stetigkeit und irrationale Zahlen, [in:] Gesammelte mathematische Werke, R. Fricke, E. Noether, and O. Ore (eds.), Braunschweig: Verlag von Friedr. Vieweg & Sohn Akt.-Ges, 315–334.

Dedekind R. (1888), Was sind und was sollen die Zahlen? [in:] Gesammelte mathematische Werke, R. Fricke, E. Noether, and O. Ore (eds.), Braunschweig: Verlag von Friedr. Vieweg & Sohn Akt.-Ges, 335–391.

Dedekind R. (1914), Ciągłość a liczby niewymierne, S. Straszewski (tr.), Warszawa: S. N.

Dedekind R. (1963), Essays on the Theory of Numbers, New York: Dover Publications.

Dedekind R. (2018), “Continuity and Irrational Numbers,” J. Pogonowski (tr.), Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia 9(1), 169–183, https://didacticammath.uken.krakow.pl/article/view/4317

Edwards H. M. (1983), “Dedekind’s Invention of Ideals,” Bulletin of the London Mathematical Society 15, 8–17. https://doi.org/10.1112/blms/15.1.8

Ferreirós J. (1999a), Dedekind and the Set-Theoretic Approach to Algebra, [in:] Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics, Basel: Birkhäuser, 81–116.

Ferreirós J. (1999b), Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics, Basel: Birkhäuser.

Ferreirós J. (1999c), Sets and Maps as a Foundation for Mathematics, [in:] Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics, Basel: Birkhäuser, 215–255.

Ferreirós J. and Reck E. H. (2020), Dedekind’s Mathematical Structuralism: From Galois Theory to Numbers, Sets, and Functions, [in:] The Prehistory of Mathematical Structuralism, E. H. Reck and G. Schiemer (eds.), New York: Oxford Academic, 115–140.

Giaquinto M. (2008a), Cognition of Structure, [in:] The Philosophy of Mathematical Practice, Oxford: Oxford University Press, 43–64.

Giaquinto M. (2008b), Visualizing in Mathematics, [in:] The Philosophy of Mathematical Practice, Oxford: Oxford University Press, 22–42.

Hartimo M. and Rytilä J. (2023), “No Magic: From Phenomenology of Practice to Social Ontology of Mathematics,” Topoi 42(1), 283–295. https://doi.org/10.1007/s11245-022-09859-1

Heller M. (2019), “How Is Philosophy in Science Possible?” Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) 66, 231–249.

Horsten L. (2021), Philosophy of Mathematics, [in:] The Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.), https://plato.stanford.edu/entries/philosophy-mathematics/.

Joyce D. E. (2005), Notes on Richard Dedekind’s: Was sind und was sollen die Zahlen? Worcester, Mass.: Clark University Press.

Król Z. (2003), “O platonizmie w teorii mnogości,” Roczniki Filozoficzne 51(3), 225–252.

Łukasiewicz J. (1915), O nauce, [in:] Poradnik dla samouków, S. Michalski (ed.), Warszawa–Kraków: Wyd. A. Heflicha i St. Michalskiego, W. Ł. Anczyca i Spółki, XV–XXXIX.

Łukasiewicz J. (1916), “O pojęciu wielkości (Z powodu dzieła Stanisława Zaremby),” Przegląd Filozoficzny 19, 1–70.

Łukasiewicz J. (1937), W obronie logistyki, [in:] La pensée catholique et la logique moderne, Kraków: Wydawnictwo Wydziału Teologicznego UJ, 7–13.

Łukasiewicz J. (1952), “On the Intuitionistic Theory of Deduction,” Indagationes Mathematicae 14, 202–212.

Łukasiewicz J. (1970), In Defence of Logistic, [in:] Selected Works, L. Borkowski (ed.), Amsterdam–London/Warszawa: North-Holland Publ. Comp./PWN (Polish Scientific Publishers), 236–249.

Mancosu P. (2008), The Philosophy of Mathematical Practice, Oxford: Oxford University Press.

Michalski S. (ed.) (1915), Poradnik dla samouków, Warszawa–Kraków: Wyd. A. Heflicha i St. Michalskiego, W. Ł. Anczyca i Spółki.

Mityushev V., Nawalaniec W., and Rylko N. (2018), Introduction to Mathematical Modeling and Computer Simulations, Boca Raton: CRC Press.

Murawski R. (2001), Filozofia matematyki. Zarys dziejów, Warszawa: Wydawnictwo Naukowe PWN.

Murawski R. (2003), “Główne koncepcje i kierunki filozofii matematyki XX wieku,” Zagadnienia Filozoficzne w Nauce 33, 74–92.

Murawski R. (2004a), “O czym rozprawiają matematycy, czyli o statusie bytowym przedmiotów matematyki,” Przestrzenie Teorii 3–4, 253–260.

Murawski R. (2004b), “Philosophical Reflection on Mathematics in Poland in the Interwar Period,” Annals of Pure and Applied Logic 127(1), 325–337. https://doi.org/10.1016/j.apal.2003.11.026

Murawski R. (2014), The Philosophy of Mathematics and Logic in the 1920s and 1930s in Poland, Basel: Birkhäuser.

Piotrowska E. (2016), “Dokąd zmierza filozofia matematyki?” Przegląd Filozoficzny – Nowa Seria 25(2), 565–578.

Popper K. R. (1972), Epistemology without a Knowing Subject, [in:] Objective Knowledge: An Evolutionary Approach, Oxford: Oxford University Press, 23–42.

Reck E. H. (2020), Dedekind’s Contributions to the Foundations of Mathematics, [in:] The Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.), https://plato.stanford.edu/entries/dedekind-foundations/.

Rylko N. and Tytko K. (2022), Multidimensional Potential and Its Application to Social Networks, [in:] Current Trends in Analysis, Its Applications and Computation: Proceedings of the 12th ISAAC Congress, Aveiro, Portugal, 2019, P. Cerejeiras, M. Reissig, I. Sabadini, and J. Toft (eds.), Cham: Springer, 297–303.

Rytilä J. (2021), “Social Constructivism in Mathematics? The Promise and Shortcomings of Julian Cole’s Institutional Account,” Synthese 199(3), 11517–11540. https://doi.org/10.1007/s11229-021-03300-7

Shapiro S. and Hellman G. (2021), The History of Continua, Oxford, New York: Oxford University Press.

Suppes P. (1969), Studies in the Methodology and Foundations of Science, Dordrecht: Springer.

Tait W. W. (1996), Frege versus Cantor and Dedekind: On the Concept of Number, [in:] Frege: Importance and Legacy, M. Schim (ed.), Berlin: de Gruyter, 70–113.

Zwierżdżyński M. K. (2012), “Konstruktywizm a konstrukcjonizm,” Principia LVI, 117–135. https://doi.org/10.4467/20843887PI.11.007.0583

Opublikowane

2023-12-12

Jak cytować

Tytko, K. (2023). Visual Thinking and the Socio-Historical Aspects of Richard Dedekind’s Contributions to the Foundations of Mathematics. Filozofia Nauki, 1–26. https://doi.org/10.14394/filnau.2023.0012

Numer

Dział

Artykuły