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1. PRELIMINARIES

The idea that the ontological foundations of quantum mechanics may be natur-
ally reconstructed in terms of irreducible dispositional properties has been floating
around for quite a while." Ian Thompson (1988) observes that although in classical
physics we already encounter dispositional properties that have to do with inter-
actions between objects, only in quantum mechanics ‘structural’ properties such as
position and velocity behave like dispositional properties due to the fact that only
rarely do they admit a definite value. Thus it may be tempting to understand quantum
properties as probabilistic dispositions to acquire certain precise values (such dispos-
itions are often called ‘propensities’). Mauro Dorato (2006, 2007) is convinced that
the majority of interpretations of quantum mechanics commit us to the existence of
irreducible quantum dispositions, although he interprets this fact as a sign that our
understanding of the ontological underpinnings of quantum mechanics is far from
satisfactory. Dorato associates quantum dispositions with non-definite properties and
stresses their contextual and relational character. He points out that each interpret-
ation of quantum mechanics (the Bohm theory, the many worlds interpretation, the
spontaneous localization theory, and the like) gives a slightly different perspective on
quantum dispositions and their characteristics.

Quantum dispositions (propensities) play an important role in an interesting at-
tempt to solve the perennial measurement problem that has been made by Mauricio

' An outline of early dispositional accounts of quantum properties by Margenau, Heisenberg,
and Maxwell can be found in (Suarez 2007).
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Suarez (2004a, 2004b, 2007). Generalizing Arthur Fine’s selective interaction ap-
proach, Suarez argues that quantum systems possess irreducible dispositional pro-
perties corresponding to particular observables, and that these dispositions are best re-
presented by appropriate mixed states which give the same probability distributions of
possible outcomes as the initial state of the system (which is generally not a mixture).
Given the assumption that during measurements of an observable A the measuring
apparatus interacts only with the selected A-propensities of the system, it may be argued
that the linear Schrodinger evolution should be applied to the mixed A-state represen-
ting only the selected part of the initial state, and as a result the final state of the com-
pound system will be a mixture of the pointer states rather than a superposition.” Re-
gardless of one’s appraisal of this particular solution to the measurement problem, it has
to be noted that the dispositional approach clearly shows a potential to give an insight
into some of the most recalcitrant conceptual problems of quantum mechanics.

To my knowledge, the clearest and most comprehensive exposition of the poten-
tial benefits of the dispositional approach to quantum mechanics has been given in a
paper by Martin Thomson-Jones (unpublished). He holds a view that the connection
between the metaphysics of dispositions and the interpretive issues pertaining to quan-
tum mechanics is bi-directional: not only can the metaphysics of dispositions help us
solve some interpretive problems in quantum mechanics, but also our philosophical
understanding of the notion of dispositions can be enhanced by considering examples
from quantum theory. As an illustration, Thomson-Jones lists several questions that
can be posed and discussed at the interface between the metaphysics of dispositions
and quantum mechanics, including the question of whether quantum mechanics can
shed some light on the problem of the reducibility of dispositions to their causal bases,
and the question of whether the problems that beset the view that all properties are
dispositional can affect our interpretations of quantum mechanics. In the second part
of his paper, he methodically lays down the foundations for the notion of quantum
dispositions that could be used to solve one particular interpretive problem in Bohm’s
version of quantum theory.

Thomson-Jones’s cautious and systematic approach to quantum dispositions
provides a ready-made model for the analysis given in this paper, and the main issue
that I am going to consider here has been prompted by his remarks about dispositional
properties of quantum systems. In short, [ am going to discuss a relatively neglected
and yet to my mind quite serious problem that arises as a result of defining quantum
dispositions in terms of measurement interactions. The problem, as I see it, is that
this natural way of defining quantum dispositions leads to circularity if we accept the

? The weakest point of this argument as I see it is the assumption of the selective character of
measurements. It is hard to accept that a measurement of an observable 4 interacts only with the
A-dispositions of the system, since A-measurements clearly affect dispositions related to other observ-
ables, incompatible with 4. For instance, by measuring the z-spin of an electron we inexorably
change the probability distribution of values of its x-spin.
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standard quantum-mechanical description of measurement interactions. After having
stated the problem, I will move on to discuss some strategies of overcoming it, using
a little-known theorem about quantum measurements due to Peter Mittelstaedt.
Although this paper is primarily focused on the difficulties with the dispositional
approach to quantum mechanics (and on some ways to avoid them), in section 6 I
will briefly mention a few potential benefits of this approach that to my knowledge
have escaped the attention of the experts. My general position is that despite the
troubles affecting the dispositional approach (and one has to remember that no inter-
pretation of quantum mechanics is entirely free from conceptual conundrums), the
benefits should outweigh the difficulties in the long run.

2. TYPES OF QUANTUM DISPOSITIONS

The most complete information about a quantum system that is available in stand-
ard quantum mechanics is encompassed in the state vector @ (strictly speaking the
most general mathematical way of representing quantum states is with the help of a
density operator W, but I’ll ignore this for the sake of simplicity). The vector ¢ con-
tains two types of information regarding the state of the system at a given moment ¢.
One is the characterization of all the properties that the system possesses at the mo-
ment ¢. This component of the state, often called the value state (after Bas van Fraassen,
cf. van Fraassen 1991: 275), is usually presented in terms of the probabilities of out-
comes for measurements of observables that are applicable to the system. But @ also
encodes the information about possible future behaviour of the system, given inter-
actions with its environment. Thus, if we know the exact form of the Hamiltonian
governing the current interactions between the system and its environment, the future
evolution of the system is given by applying the unitary evolution operator U to ¢:
@) = U(t, ') ¢(¢). In van Fraassen’s terminology, this part of the overall state is re-
ferred to as the dynamic state.’

Both value and dynamic states can be naturally presented in terms of dispositions
of the system to exhibit certain behaviour in certain circumstances. In the case of the
value state, we can speak about various dispositions of the system to give rise to macro-
scopically observed outcomes upon appropriate measurements. Let us focus on the
part of the value state pertaining to a given observable A. First, we must distinguish
two cases: one in which the state @ of the system is an eigenstate for 4, and the other
in which it is not. In the first case, there is a particular value q; that is certain to be
revealed upon measurement of A. Hence, the 4-related disposition that the system
possesses is of a ‘sure-fire’ (deterministic) type: if the system undergoes a measure-
ment-type interaction with some macroscopic apparatus, pertaining to observable A4,
then the apparatus is bound to record value a;. On the other hand, if ¢ is not an

* The use of van Fraassen’s terminology does not imply that I endorse here his modal interpret-
ation of quantum mechanics.
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eigenstate of 4, the 4-related dispositions are indeterministic, meaning that for each
possible value a; of 4 there is an objective chance that it will be recorded upon meas-
urement.

Dispositions related to the dynamic state are of a slightly different sort. These
are, roughly speaking, dispositions of the system to acquire new states as a result of
interactions with its environment. Hence, the stimulus in this case is not a measure-
ment-type interaction, but any interaction represented by a particular Hamiltonian
(we should keep in mind that measurements constitute a special subcategory of the
category of all interactions that a particular system can participate in). More inter-
estingly, the manifestations of dynamic dispositions are not macroscopically obser-
ved states of affairs, but rather the events of the system’s entering new states as pre-
scribed by the Schrodinger evolution. And, of course, these new states in turn can be
interpreted in terms of both value dispositions and further dynamic dispositions.
Thus the manifestations of dynamic dispositions are actually new dispositions (or,
more precisely, events of acquiring new dispositions). This fact may be seen as a
drawback, as it arguably leads to a regress (or circularity). Loosely speaking, it may
be argued that dynamical dispositions will never properly actualize, as their actual-
ization involves new dispositions, some of which can only be ‘actualized’ as yet new
dispositions, and so on.*

However, this situation is not unique to the case of quantum dispositions. Phil-
osophers who subscribe to the view that all properties have dispositional character
(so-called dispositional monists) encounter the same difficulty. Any attempt to define
properties in terms of their stimulus and manifestation leads either to an infinite re-
gress or to circularity, if we assume that all properties are dispositions. Alexander
Bird (2007: 138-146) has given a convincing argument in support of the claim that
the regress/circularity does not necessarily imply that the identities of dispositional
properties are impossible to establish.” If the entire web of properties interconnected
by the stimulus/manifestation relation satisfies a particular structural condition
(called the asymmetry condition), then it can be claimed that each property is given
its unique identification in terms of its place in the entire structure. Whether this
strategy could be applied to the case of quantum dynamic dispositions remains to be
seen, but in principle I see no fundamental obstacles to that.

In this paper, I would like to focus exclusively on value dispositions, leaving
proper analysis of dynamic dispositions for another occasion. As we have stated, the

* One way of circumventing this difficulty is to stipulate that the manifestations of dynamic
dispositions should be limited to value dispositions only. Because value dispositions manifest them-
selves as non-dispositional outcomes of measurements, the regress is blocked in the second step. In
this approach, dynamic dispositions would be dispositions to acquire new dispositions to reveal par-
ticular values in measurements. However, the trouble with this solution is that seemingly we lose a
vital piece of information about the possible ways the system can behave dynamically after acquir-
ing a new set of value-dispositions.

* I have discussed Bird’s proposal at length in (Bigaj 2010a).
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stimuli (the conditions of manifestation) of these dispositions are measurement inter-
actions. But in order for this characterization to be of any use, we have to answer the
question of what differentiates measurement interactions from any other interactions
that we encounter in quantum mechanics. Thomson-Jones has suggested that we
should rely on the general, quantum-mechanical characteristic of measurement pro-
cesses as is typically given in the literature. The point is that without going into the
details of particular interactions which occur during measurements of various physi-
cal quantities (spin, momentum, etc.) and which depend on specific experimental
setups, we can formulate general requirements that have to be satisfied by any inter-
action that aspires to be a measurement of a given observable 4. However, in what
follows I will argue that this approach leads to circularity, and therefore it does not
offer a good explication of what value dispositions are. Later I will consider some
possible strategies of avoiding the problem.

3. THE QUANTUM THEORY OF MEASUREMENT

Let us start with presenting some general characteristics of quantum measure-
ments which I announced in the previous section. As van Fraassen puts it, we would
like to be able to answer the following question:

Given systems X and Y, and observables A pertaining to X and B pertaining to ¥, what must be
minimally required of these in order to measure 4 on X by means of Y (chosen as apparatus)
with B designated as pointer-observable? (van Fraassen 1991: 210)

An answer to this question is usually presented in the form of several conditions
that are imposed upon measurement processes. In my exposition I will follow the
approach adopted by Mittelstaedt (1998: 19-40), which I take to be the standard one.
Let S denote the system under measurement and M the measuring apparatus.
Mittelstaedt assumes that measuring processes consist of three steps: the preparation,
the premeasurement, and the objectification and reading. In the first step the system
S is prepared in an initial state @(S) while the measuring apparatus is in its ‘ground’
state P(M). The premeasurement involves an interaction between the system S and
the apparatus M that leads to a unitary evolution of the compound system S + M. In
the final stage of the measurement process the measuring apparatus should indicate
some objective value that is interpreted as the measurement outcome. Let us stipulate
that the measured observable pertaining to system S is represented by an operator A
with the set of eigenvectors ¢“/ and eigenvalues a;, and that the pointer observable Z
defined in the state space of system M has eigenvectors ®; and eigenvalues Z; that
correspond to a; via the pointer function f: a; = f{Z;). Mittelstaedt accepts that meas-
urements have to satisfy three conditions, the first of which is the calibration postu-
late:
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€)) The calibration postulate. If the initial state of S is one of the eigen-
states ¢“, and the measuring apparatus is in its ground state ®(M),
then after the premeasurement interaction the system S + M should be
in the joint state ¢“ [0 ®,, where ®; corresponds to the value Z; correl-
ated with a;: a; = 7).

It should be clear that what the calibration postulate effectively says is that a
proper A-measurement always reveals the value a; as its outcome if (but not only if)
the initial state of the measured system is an eigenstate corresponding to this value.
A generalization of this condition for an arbitrary initial state @ of system S takes the
form of the probability reproducibility condition.

2) The probability reproducibility condition. If the initial state @ of S is an
arbitrary superposition of eigenstates ¢ (¢ = I (@, a))¢"), then
each formal probability p(@, a;) = |c(@, aj)l2 should match the relative
frequencies of the cases in which the apparatus records the value Z; =
/(@) in a series of N measurements, where N is arbitrarily large.

Condition (2) ensures that the fundamental interpretive principle of quantum the-
ory known as the Born rule is indeed satisfied in proper measurements. The quan-
tum-mechanical algorithm for calculating probabilities of particular outcomes should
be applicable to the statistics obtained in real experiments, provided that the ensem-
ble consisting of identical particles is sufficiently large. Notice that it can be claimed
that (1) follows from (2) as its special case. If ¢ = ¢, the probability p(¢, a;) equals
one, and according to (2) the outcome q; is bound to be revealed in all N repetitions
of the measurement. Thus it can be concluded that the state of the measuring appar-
atus after the interaction should be the eigenstate ®;, as prescribed by (1). But for our
purposes it will be convenient to keep the two postulates separate.

Mittelstaedt imposes a third condition on measurements which he refers to as the
pointer objectification postulate. Roughly, this postulate ensures that measurements
always have definite results. Mittelstaedt expresses the pointer objectification postu-
late in the form of the requirement that the reduced mixed state which characterizes
the apparatus M after the premeasurement interaction should admit the ignorance in-
terpretation. It is a well-known fact that this postulate leads to an inconsistency with
the linearity of quantum evolution.® For the purpose of this paper the pointer object-
ification postulate is irrelevant, hence I will omit it. Thus we can conclude that the
conditions (1) and (2) imposed so far constitute a necessary (but not sufficient) cri-
terion for a given interaction to be of the measurement type. That much should be
enough to show that the dispositional interpretation of value states indeed ends up in
a vicious circle.

® For a general exposition of the measurement problem, see Krips 2008.
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4. THE CIRCULARITY PROBLEM

At the beginning of the paper, I made a suggestion that the value state of a given
system can be interpreted in terms of dispositions, both deterministic and probabilist-
ic. Let us now focus on the deterministic dispositions, associated with eigenstates of
measured observables. If system S is in an eigenstate ¢“ of observable 4, we can
attribute to it the deterministic disposition to reveal outcome a; in all A-measure-
ments. But now we recall that all interactions which purport to be measurements
have to satisfy the calibration postulate (1) as a matter of conceptual necessity. Moreo-
ver, it is clear that postulate (1) is supposed to give a non-trivial characteristic of
measurements, i.e. a characteristic such that some physical interactions should fail to
satisfy it. But when we couple condition (1) with the dispositional interpretation of
eigenstates, we face an immediate problem. Let us first suppose that the dispositional
interpretation of eigenstates is to be understood as the stipulation that the term ‘the
eigenstate corresponding to value «@;” should mean ‘the deterministic disposition to
reveal value a; upon measurement’. In that case the definition is clearly circular, as
the meaning of the word ‘measurement’ in turn is given with the help of the term
‘eigenstate’.

The appearance of circularity in the above definition can be eliminated if we
elect to get rid of the notion of an eigenstate altogether and present the calibration
postulate directly in terms of dispositions. The proposed reformulation of the postu-
late would be as follows: if at the beginning of an interaction with the measuring ap-
paratus the measured system possesses the (sure-fire) disposition to reveal value g; in
this interaction, and the initial state of the measuring apparatus is ®(M), then the
state of the apparatus after the interaction will be ®; (the apparatus will record value
a; as the outcome). Unfortunately, the suggested reformulation hardly imposes any
restriction at all on the set of interactions between the system S and the apparatus M.
To see this, let us suppose that we want to show that a given interaction does not sat-
isfy the dispositional version of the condition (1). In order to do that, we would have
to find a system that possesses the disposition to give rise to an outcome a;, but in
spite of that, at the end of the interaction with apparatus M, the state of M is different
than ®;. But in that case we could simply deny that S had the required disposition to
begin with. Thus virtually any interaction between systems S and M can pass the test.”

One possible strategy to avert the circularity/triviality problem in this case could
be to abandon the assumption that we should reduce the notion of an eigenstate to

7 It may be also pointed out that there is another difficulty associated with this approach. If we
insist on interpreting all quantum states as dispositions, then the requirement that the measuring ap-
paratus after the interaction assumes the state ®; has to be cashed out in terms of possible measure-
ments done on the measuring apparatus, and this clearly leads to a regress (I am grateful to James
Ladyman for alerting me to this problem). One way of avoiding this complication may be to assume
that for macroscopic objects their dispositions can be manifested directly, without the mediation of
any further measuring devices.
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that of dispositions. Perhaps we could instead adopt the view according to which quan-
tum systems are equipped with both quantum states (including eigenstates) and
dispositions. Apart from the fact that this approach clearly infringes the principle of
ontological parsimony (why postulate two separate types of entities if one type can
do the explanatory job?), it has another unpalatable consequence that we should be
aware of. Notice that thanks to the calibration postulate the relation between being in
an eigenstate and possessing an appropriate disposition becomes that of analytic en-
tailment. But how can two separate entities be connected by a conceptually necessary
link (as opposed to a merely nomically necessary one)? How can it be that in all pos-
sible worlds, including worlds with radically different laws of nature, it remains true
that all objects with one property have the other one? It seems to me that there are
only two acceptable explanations of this fact: either the two connected properties are
in fact the same property (in which case we are back to the problem of circularity), or
the alleged disposition is not a property in the strict sense of the word but rather
some sort of a Rylean ‘inference ticket’ (which implies abandoning the programme
of the dispositional reinterpretation of quantum mechanics).

The problem of circularity is not limited to the case of deterministic dispositions.
It is straightforward to see that an analogous argument can be applied to probabilistic
dispositions in the context of the probability reproducibility condition (2). According
to the suggested interpretive rule, being in state @ which is an arbitrary combination of
eigenstates ¢“ implies that the system possesses a set of probabilistic dispositions D;
to give rise to outcome a; with the objective chance being precisely equal to p(@, a;).
If we assume, as seems appropriate, that objective chances are revealed as relative
frequencies when the number of repeated experimental runs goes to infinity, then it is
clear that we will end up with the same conceptual difficulty as in the previous case.
For now the condition (2) can be reinterpreted as stating that if the system possesses
the disposition to give rise to outcome a; with probability p(@, a;) as a result of inter-
action with the measuring apparatus, then the relative frequency of g; in a long run of
measurements will match p(@, a;). And again, this stipulation can be either interpreted
as circular (if we define appropriate dispositions with explicit reference to the notion
of measurement) or tautologous (we are effectively saying that any interaction with
the measurement apparatus that gives rise to some well-defined frequency of out-
come a; is a sign that the system possesses the corresponding propensity).

5. PROBABILITY-FREE INTERPRETATION
OF QUANTUM MEASUREMENT

Despite appearances, it turns out that there is an important difference between the
circularity problem that affects deterministic dispositions and the similar problem
impacting probabilistic dispositions. This has to do with the relations between the
calibration postulate and the probability reproducibility conditions. I mentioned earl-
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ier that condition (1) can be seen as a special case of condition (2). Surprisingly, it
can be shown that quite the opposite is also the case: in a sense the probabilistic pos-
tulate encompassed in the condition (2) can be derived from the probability-free
condition (1) with the help of some quantum-mechanical formalism. This result, due
to Mittelstaedt, can give us a glimmer of hope that the circularity problem can be
overcome at least with regard to probabilistic dispositions. If the only condition that
any measurement interaction has to satisfy (apart from the controversial pointer ob-
jectification requirement) is the probability-free calibration postulate, then the direct
threat of circularity affecting probabilistic dispositions seems to be averted. Because
Mittelstaedt’s theorem is an important and surprising result that is relevant not only
to the dispositional approach to quantum theory but potentially to other interpretatio-
nal approaches as well (and yet, to my knowledge, its consequences has not been wide-
ly discussed in the literature), it may be worthwhile to present it in greater detail.

Let us consider N identically prepared systems, each of which is in the same initial
state @, The state of the entire system ¢" will be of course presented as the tensor
product ¢V O ¢ O ... O ¢™. We suppose that each system undergoes a measure-
ment of an observable 4, hence a full measurement consisting of N single measure-
ments will reveal an N-tuple of numbers as its outcome. The initial individual states
of the systems are supposed to be non-trivial superpositions of the eigenstates of the
observable 4, thus they can be presented as follows: ¢ = "1 (@, a)) @Y. The squared
norm of the coefficients ¢ defines, of course, the Born probabilities, which we can call
‘formal probabilities’, because for now we are not allowed to assume that they can be
interpreted as real probabilities (frequencies) of particular outcomes (this is what we
intend to prove). Let’s symbolize those formal probabilities as p(@, a;) = |c(@, aj)lz.

In the next step we should focus on the measuring apparatus, considered as a
complex consisting of N individual apparatuses. The states of the apparatus are
vectors in an N-fold tensor space. By ®; we will symbolize the state of a singular ap-
paratus that corresponds to its pointer value Z;, and therefore to the value a; of me-
asured observable 4. Hence the state of the entire N-tuple of apparatuses after suc-
cessful completion of measurement should be given by the vector ®)'= ¢, 0o, 0
... O @, corresponding to the following sequence of outcomes (a, ay,, ... a;,). The
ingenious method of introducing a quantum-mechanical equivalent of probabilities
that Mittelstaedt follows in his approach relies on a new operator ) whose ‘intu-
itive’ role is to measure the relative frequency of the outcome a; in a given sequence
of N outcomes. Formally we will stipulate that F} operates in the state space of the
total measuring apparatus, and its eigenvectors are vectors ®) with corresponding
eigenvalues /"(k, [), each of which is equal to the number of occurrences of the out-
come a in the sequence of outcomes corresponding to ®) divided by N. Hence F}
can be defined as the following sum of the projection operators (note that this is a
case of degeneracy, as distinct eigenvectors differing only by permutations of out-
comes a; will correspond to the same eigenvalue of F7}):
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EY =" fY(k,H)P[®)]

From the calibration postulate and the assumption of linearity of quantum-
mechanical evolution it can be derived in the standard fashion that after the meas-
urement interaction each single measuring apparatus will be in the mixed state given
as follows:

Wi =2 p(#.a)P[P]
and the state of the entire measuring device will be the following mixture:

WA:IN :ZPJP[CD;V]
7

where p;=p(@, a,) ... p(@, a,,). Now Mittelstaedt formulates and proves the follow-

ing mathematical theorem (‘probability theorem’ in his terminology, see Mittelstaedt
1998: 48, 125-127):

(PT) W (F" = p(¢,a,))} =0

He interprets this formal result as showing that in the limit when A is infinite, the
value of the operator F? after the measurement interaction approaches the formal
probability p(@, a;) arbitrarily close. If that is the correct interpretation of (PT), then
indeed we can claim that effectively the probability reproducibility condition has
been derived from the ‘probability-free’ interpretation of quantum measurement that
includes the calibration postulate as the only restriction imposed on measurement
interactions. For certainly eigenvalues of F7} represent relative frequencies of post-
measurement outcomes a; (that is how we have defined this operator), so if these
frequencies as obtained in real experiments tend to approach numbers p(@, a;) de-
rived from the quantum-mechanical formalism, this shows that the numbers p(@, ay)
are not merely formal probabilities, but full-fledged chances of outcomes obtained at
the end of the measurement interaction. However, we have to be certain that the step
from the formal theorem (PT) to its subsequent interpretation does not contain any
hidden premises that go beyond the probability-free interpretation of quantum-
mechanical formalism.

At first sight, Mittelstaedt’s reading of (PT) seems to follow immediately from
the textbook interpretation of the trace operator and its function in quantum mech-
anics. It is part of the standard reading of the quantum-mechanical formalism that the
expression Tr(WA), where W is a density operator and 4 any Hermitean (self-adjoined)
operator, represents the expectation value of 4 when the system is in the state described
by W (this can be seen immediately when we apply the definition of trace as the
sum of all diagonal elements of a given operator: Tr{W'\(F} — p(#, ax))*} = ZADY
W N(FY— p(@, ap))* @Yy = Zpf(k, ) — p(#, ay))*.) Given this interpretation of trace,
(PT) can be expressed as stating that the expectation value of the operator measuring
the difference between the relative frequency operator 7} and the formal probability
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p(@, a;) goes to zero for arbitrary large numbers N when the measuring apparatus is
in the state /¥"};.. However, the very notion of the expectation value presupposes that
there is a well defined distribution of probabilities over possible values of 4 (in our
case represented by numbers p;), so this can hardly be called a ‘probability-free’ in-
terpretation. Hence, we have to delve deeper into the mathematical and interpretative
significance of (PT).

Mittelstaedt (48) suggests an alternative way of looking at (PT), as is clear from
the following fragment:

In the limit of large N the post-measurement product state '3 becomes an eigenstate of the
relative-frequency observable F7, and the relative frequency of the pointer value a; approaches
the probability p(@, ax).

Can this conclusion be proven on the basis of the formal result (PT)? Mittelstaedt
is silent about the details of how to do this, but we can try to supply the missing elem-
ents. To prove that '}, is indeed an eigenstate of F} with the corresponding value
p(@, ay), we have to show that the equation F} W'y = p(@, ax)W'3; holds true when N
approaches infinity. Abbreviating the operator F} — p(@, a;) as Q we can present the
aforementioned eigenequation in a simplified way: Q") = 0. But observe that in this
notation (PT) can be presented equivalently as Tr(Q*#'};) = 0. Can it be inferred from
the fact that the trace of a given operator equals zero that the operator itself must be
zero? Generally such an inference is invalid, however in our case we can appeal to the
fact that the operator Q*W'}, is positive, as it is the product of two positive operators
(density matrices being positive in virtue of their definition). More specifically, we can
diagonalize the matrix Q*w™,, in the basis @}, and in that way we will obtain a matrix
whose diagonal elements will be non-negative real numbers (/"(k, I) — p(#, a)))’p:.
As (PT) implies that the sum of all diagonal elements has to be zero (by the defin-
ition of trace), we can infer that the elements themselves have to be zero too, and be-
cause all the non-diagonal elements of the diagonalized matrix are already null, we
conclude that the matrix Q?/"}; approaches zero when N goes to infinity. From this
it easily follows that QW' = 0 in the limit, and hence W'}, indeed becomes an
eigenstate for 7} when N is arbitrarily large.

Let us take stock of the last paragraphs. Mittelstaedt’s result shows that if the cali-
bration postulate is satisfied by a class of interactions between the system S and the
measuring device M, then the frequencies of particular outcomes revealed as a result
of these interactions will (in the limit) match the numbers derived from the initial
state of § with the help of the usual quantum-mechanical algorithm. Thus no separate
probabilistic postulate is necessary to characterize measurements. If we agree that the
meaning of the concept of probability is completely exhausted by the relative fre-
quency interpretation, then we can also conclude that there is no need to include any
probabilistic interpretational rule (such as the Born rule) in the quantum-mechanical
formalism whatsoever! However, it is important to keep in mind that in order to de-
rive the probabilistic postulate from the probability-free interpretation of measure-
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ments we had to rely on premises that go beyond definitional characteristics of meas-
urements. The most important of these premises is the eigenstate-eigenvalue (e/e)
link that enabled us to make inference from the mathematical fact that W', is an
eigenstate of the operator F} with a particular value p(¢, a;) to the empirical conclu-
sion that the actual observed frequency of a given outcome will be equal to p(@, ay).}
While the e/e link does not mention probabilities, it is still a factual claim that cannot
be treated as true in virtue of conceptual (or mathematical) necessity.

6. THE CIRCULARITY REVISITED

How does the above-mentioned result bear on the problem of circularity that
threatens the dispositional interpretation of quantum value states? As I have already
tentatively suggested, if we are able to eliminate the probability reproducibility condi-
tion from the set of rules that jointly define the meaning of the term ‘measurement’,
then the probabilistic dispositions seem not to be afflicted by circularity, in contrast
to deterministic ones. But one may raise the following objection to this conclusion.
The argument from the last section proves that postulate (2) is derivable from (1),
hence although technically we can eliminate its presence, logically it will still be
‘there’. It is irrelevant — the objection goes — whether we decide to write down the
probability reproducibility condition as a separate postulate, or whether, more eco-
nomically, we elect to eliminate the redundancy and narrow down the postulates to
the calibration condition only. In either case the condition (2) will remain satisfied by
the class of measurement interactions, so how can we claim that the probabilistic dis-
positions will not be affected by the circularity problem?

The answer to this objection is based on the fact which I have already empha-
sized: postulate (1) itself does not imply (2) logically or mathematically but only in
tandem with some extra factual assumptions.” Consequently, although (2) remains
true about quantum measurements (as long as the premises required for its derivation
are true), its truth is no longer a matter of conceptual necessity. Measurements do not
have to satisfy (2) but only happen to satisfy it. Thus meeting condition (2) is not
part of the meaning of the word ‘measurement’, and as a result the way we character-
ize probabilistic dispositions by reference to measurements does not lead to a vicious
circle, for we can correctly pin down the meaning of the term ‘measurement’ without
mentioning any probabilities or frequencies. To put it differently and perhaps more
emphatically, postulates (1) and (2) taken together define a notion of measurement
that is coextensional with the notion defined by (1) only, but these two notions have
different intensions.

¥ Another extra premise is the linearity assumption that we mentioned earlier in the derivation.

? Note that contrary to this case, the implication from (2) to (1) that we have acknowledged
earlier is of the logical type, for (1) is just a special case of the condition (2) if the latter is interpret-
ed broadly as covering cases when ¢ is just one of the eigenvectors of 4.
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But the question remains what to do with deterministic dispositions which are
still causing problems. A radical remedy would be to eliminate them altogether and
stick to the probabilistic ones. This is actually the approach advocated by some pro-
ponents of the dispositional interpretation of quantum mechanics. The suggestion is
to make the following distinction: dispositional properties characterize a system only
with respect of observables for which the system is not in an eigenstate, whereas
eigenstates are interpreted with the help of categorical properties of possessing a
particular value of the observable. This approach to the notion of dispositions in quan-
tum mechanics is motivated by the desire to extend the usual eigenstate-eigenvalue
link, which provides a ‘metaphysical’ interpretation of eigenstates in terms of pos-
sessing categorical properties, while being silent about how to interpret situations in
which the system is not in an eigenstate (other than implying that in this case the
system does not possess any definite value; note that some interpretations of quan-
tum mechanics, such as the Bohmian theory or modal interpretations, question just
that implication). But now we can give a more specific answer to the question of
how to interpret states that are non-trivial superpositions of eigenstates: if a system S
is not in an eigenstate of observable A, it possesses a set of probabilistic
A-dispositions (propensities) to reveal particular values with appropriate chances
defined by its quantum state.'® Mittellstaedt’s result seems to support this approach to
dispositions in quantum mechanics, for probabilistic dispositions can escape the circu-
larity problem while deterministic ones apparently cannot.

In spite of this, I believe there are some reasons for hanging on to the notion of de-
terministic value dispositions. One of them (rather less important) may be the fact that it
seems somewhat arbitrary to draw a sharp metaphysical distinction between categorical
and dispositional properties on the basis of the mathematical difference that can be
made infinitely small. For clearly non-eigenstates can approximate eigenstates arbitrar-

ily closely: the superposition of two non-degenerate eigenstates @ = \/% L, is

technically not an eigenstate for any arbitrarily large n, and yet it approaches @, in-
finitesimally close when n goes to infinity. But why should we insist that when the
probability of obtaining a particular outcome a equals 0.99999, the system possesses
the propensity to reveal value a, while when the probability reaches 1, the disposition
disappears, replaced by a firm categorical property?

' Dorato in (2006) makes it clear that in his approach the division between dispositional and
categorical properties coincides with the division between indefinite and definite values of observ-
ables. On the other hand, the way Thomson-Jones proposes to amend the eigenstate-eigenvalue link
is more flexible. He assumes that if a system is not in an eigenstate for a given observable 4, then it
possesses a set of 4-related dispositions, but he leaves it open whether 4-related properties of a sys-
tem that is in a corresponding eigenstate should be interpreted as categorical or dispositional
(Thomson-Jones, unpublished manuscript, p. 14). In personal communication Thomson-Jones
admitted that he is inclined to interpret some definite quantum properties (such as spin) as determin-
istic dispositions, but he has reasons to reject the general claim that all such properties are dispositional.
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But there is a more robust argument showing that in some cases it is beneficial to
speak about dispositions of a system even though the system is in an eigenstate of an
appropriate observable. Consider a compound system of two particles whose relative
position is fixed, although each particle taken separately is not properly localized
(this is obviously the famous entangled state that was introduced in the original EPR
argument). This setup implies that the state of the combined system is one of the
eigenstates of the operator D = X; — X, representing the difference between the par-
ticles’ positions. According to the standard reading of the e/e link, we have to infer
from this that the system possesses the following categorical property: the particles
are precisely d meters apart. But the last locution apparently implies the statement
‘Particle 1 is located d meters away from particle 2°, which in turn entails that par-
ticle 1 is located somewhere, and this contradicts the fact that the separate states of
the particles are not eigenstates of their position operators. This case is just one of
many examples of the general situation in which a compound system is in an eigen-
state of an operator defined as a function of some observables pertaining to separate
components, while none of the components is in an eigenstate of their respective ob-
servables (another well-known example is the singlet-spin state of two spin-1/2 par-
ticles, where the total spin equals zero while separate spin-components remain inde-
terminate).

I believe that the dispositional interpretation of eigenstates can come in handy
here, because it eliminates the appearance of inconsistency. Instead of maintaining
that the EPR particles are definitely d meters apart, we can describe the situation by
saying that they have the deterministic disposition to localize at a fixed spatial separ-
ation equal to d. This is perfectly compatible with the fact that the dispositions of se-
parate particles to localize at a given region are irreducibly probabilistic. Similarly,
we can insist that the total spin in the singlet-spin state is not actually equal to zero
before measurement (which would suggest that the separate spins which contribute
to the total value are already determinate), but rather that the system possesses the
sure-fire disposition to disclose the separate spins as anticorrelated no matter what
the outcomes of their measurements are. Notice that we have a clear case of non-
supervenience (holism) here: the probabilistic dispositions pertaining to separate ob-
servables do not determine the sure-fire disposition of the entire system. But at least
we can exploit a clear distinction between possessing a property and actualizing a
disposition. No actualization of the ‘global’ disposition of an entangled system is pos-
sible without a prior actualization of separate ‘local’ dispositions, and consequently
no categorical property characterizes the system before measurement, even though
the system as a whole is in an eigenstate.

Finally, if we associate categorical A-properties with every eigenstate of A4, we
have to accept that quantum mechanics is strongly non-local, i.e. that it is possible to
immediately change a physical property of a distant system by merely selecting a local
observable for measurement (this is akin to so-called parameter dependence). Henry
P. Stapp has shown that when two spin-half particles are prepared in a certain state
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known as the Hardy state, the probability of obtaining a particular outcome on one
particle is 1 given that the other particle undergoes measurement of a certain observ-
able (regardless of its outcome), while when an alternative selection is made, the
probability drops to less than 1."" Under the categorical interpretation of eigenstates
it looks as though a mere selection of a parameter to measure can create a new cat-
egorical property of a distant system. On the other hand, the dispositional account of
eigenstates may be used to blunt the threat of non-locality thanks to the fact that the
notion of a dispositional property is more flexible than that of a categorical property
(it may be claimed, for instance, that quantum dispositions of systems do not have to
be localized entirely where the system is located). The details of such an approach
have to be worked out on a different occasion.

7. ALTERNATIVE SOLUTIONS

If we are convinced by these arguments, we have to face the problem of circular-
ity again. How can we characterize the concept of measurement which figures in the
definitional characteristic of deterministic value dispositions without referring back
to the notion of disposition itself? For now I can only offer some tentative sugges-
tions of solutions that are far from being satisfactory. It may be proposed, for instance,
that instead of giving a universal quantum-mechanical characteristic of measure-
ments we should rely on low-level, particular descriptions of experimental setups
that are used in real laboratories to measure physical quantities, such as spin. For
example, we may insist that a measurement of the spin of an electron in a given
direction is just a physical interaction of this electron with a Stern-Gerlach magnet
appropriately oriented in space. An obvious disadvantage of this approach is the fact
that there can be more than one way of measuring one and the same quantity (for in-
stance, instead of checking the deflection of the trajectory of an electron in a magne-
tic field we may want to detect the electromagnetic radiation that is emitted by the
electron when its spin aligns itself with the direction of the field, and in that way re-
cord the direction of the spin along a given axis: if there is no radiation, the direction
is ‘up’, if the radiation occurs, the direction is ‘down’). Consequently, we would
have more than one disposition associated with the same physical quantity, and we

' (Stapp 1997) contains the original formulation of the proof, while its most recent version can
be found in (Stapp 2004). Stapp’s argument is based on the logic of counterfactual conditionals,
where the truth of the statement ‘If observable 4 were measured, the outcome would be «’ is taken
as a counterfactual interpretation of the fact that the probability of the outcome a is one. Stapp claims
that his argument proves conclusively that quantum theory is strongly non-local. In my extensive
analysis of his claim, I show that the argument goes through only if we assume that there is a cat-
egorical property of the system which underlies the truth of the aforementioned counterfactual
(Bigaj 2010b).
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would have to face the pressing question why all these dispositions happen to agree
with one another.

Another possibility is to enlist help from some non-standard interpretations of
quantum mechanics in general and the notion of measurement in particular. Let me
use an example: recently a lot of attention has been given to the interpretation known
as the spontaneous localization theory (the GRW theory).'? This interpretation is based
on the conjecture (as of yet experimentally unconfirmed) that each quantum particle
is characterized by a minute chance of ‘jumping’ from its unlocalized state to a state
with some precise position. The chance of this event is so small that the evolution of
a single quantum object is for all practical purposes as predicted by the standard
Schrodinger equation, but if a sufficiently big number of quantum objects get cor-
related with one another, the probability that one of them will undergo a spontaneous
localization and ‘drag’ the remaining particles with it is virtually one.

The GRW theory interprets measurements, in a traditional way, as interactions of
microscopic quantum systems with macroscopic objects, and the recorded outcome is
explained with the help of the spontaneous localization of a huge number of individ-
ual particles constituting the measuring device. Thus it may be theoretically possible
to characterize measurements of particular observables without using postulates (1)
and (2). Of course, certain prerequisites have to be satisfied in order for this to
happen. As the fundamental assumption of the GRW theory is that position is the
only quantum parameter that can spontaneously acquire an almost precise value, we
have to find a way to correlate all other measurable properties with the position of
some macroscopic objects. But it is possible to devise a measurement whose out-
comes are differentiated only by a small displacement of a couple of photons, and yet
due to the extreme sensitivity of the human retina such different outcomes can be dis-
cerned by an experimenter.” In order to deal with such cases, the physiological de-
tails of the perception process have to be taken into account. As is the case with vir-
tually all attempts to solve the perennial problem of quantum measurement, the GRW
theory has its share of internal difficulties, including the famous problem with the
‘tails’ of the wavefunction and the trouble with the proper relativization of the theory.

Personally, I am attracted to a different approach which could solve the circu-
larity problem with value dispositions in a radical way. Unfortunately, it is also an
approach that is no more than a promissory note rather than a fully developed theory.
Let us first notice that from a metaphysical point of view there is something deeply
unsatisfactory about value dispositions in that they are presented with the help of a
notion which has clear observer-related connotations. The standard notion of meas-
urement is definitely biased towards human observers and their sensory capacities,
because an essential feature of measurements is that they should enable observers to

"2 For an extensive exposition of this theory prepared by one of its creators, see Ghirardi 2008.
A more popular presentation can be found in (Ghirardi 2005: 404-436).
" See Albert, Vaidman 1989, Albert 1992.
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gather information about the physical state of the system. Thus dispositions whose
stimuli conditions involve measurements are unlikely candidates for fundamental
properties of physical systems. After all, in possible universes in which there are no
humans there is nothing that could privilege measurements over any other inter-
actions. We may even wonder if measurements constitute a natural kind of physical
interactions between systems. Taking this into account, we may agree that the spin
property of a system is connected (even as a matter of physical necessity) with the
disposition of the system to produce certain outcomes in spin-measurement inter-
actions, but this disposition does not seem to constitute the essence of the property.'
But this observation leaves us with the pressing question of what is the real dispos-
itional essence of spin. Unfortunately, I am unable to give a fully satisfactory dispos-
itional account of quantum properties — I can only suggest what such an account
should look like. As we remember, dynamic dispositions of quantum systems are
characterized in terms of interactions with the environment and the subsequent evo-
lution leading to the future states. Analogously, we could think of value properties as
dispositions whose stimuli are interactions with the environment, but whose mani-
festations are the events of acquiring new states not by the system that possesses the
property, but by the objects that the system interacts with. Thus dynamic dispositions
would be passive, while value dispositions active.

The main difference between the currently considered approach and the meas-
urement-based approach to value dispositions is that we do not require the object
which the property-bearer interacts with to be macroscopic, or to have anything that
could play the role of a ‘pointer’ indicating particular values. Value dispositions are
just interpreted as powers to change other systems’ properties, no matter what these
objects and properties are. As an illustration of this difference, let us consider a two-
slit experiment with electrons. The property of an electron of being located near one
of the two slits can be interpreted as the set of dispositions to change some properties
of other particles near this slit. Suppose that another electron happens to sit next to
the first slit and that the electron that passes through this slit inevitably flips the spin
of the other electron. Strictly speaking, this interaction does not constitute a meas-
urement, for an observer is incapable of telling what the spin of the ‘detecting’ elec-
tron is after the interaction. And yet we may say that the fact that the first electron
passed through the first slit gets ‘recorded’ in the final state of the other electron.
Thus the disposition to flip the spin of the second electron can count as a representa-
tive of the position of the first one. Interestingly, the interaction with the ‘detecting’
electron next to one of the slits has an observable effect on the behaviour of the

' Bird (2007: 157-158) notes that although the existence of a property may imply a wide range
of counterfactual conditionals, not all of them can represent the essence (nature) of that property.
Referring to the famous example of triangularity used by Hugh Mellor, Bird observes that it is
unintuitive to assume that the disposition expressed in the conditional ‘If someone were to count the
corners of x, the result would be three’ reveals the nature of triangularity, for even in possible worlds
in which there are no agents capable of counting there would still be triangular objects.



22 Tomasz Bigaj

electrons passing through the slits; namely, it destroys the interference pattern cre-
ated by adding two probability amplitudes associated with the electrons passing
through either one or the other slit (this fact is usually interpreted as indicating that a
process broadly analogous to measurement is taking place here).

An obvious disadvantage of this new dispositional interpretation of value ascrip-
tions is that there will be multitudes of distinct dispositions corresponding to a given
measurable property. Clearly, there are numerous ways an object in a certain state
can interact with its environment, depending on the particular characteristics of the
environment and its relations with the object. Thus properties such as spin, momen-
tum, position, etc. would turn out to be multi-track dispositions with different stimuli
and manifestations, and as such would not count as fundamental physical properties.
But at least we could interpret them as clusters of the fundamental dispositions to
induce changes in the state of external objects. It remains to be seen whether all
dispositions associated with a given observable can be shown to have some unique
characteristic in common which differentiates them from other dispositions and jus-
tifies using a single umbrella term to cover them all. If achieving this goal was viable,
we could free ourselves from the unfortunate consequences of including the obser-
ver-dependent notion of measurement in the description of fundamental properties of
the physical world.

BIBLIOGRAPHY

Albert D. (1992), Quantum Mechanics and Experience, Cambridge (MA): Harvard University Press.

Albert D., Vaidman L. (1989), On a Proposed Postulate of State Reduction, ,,Physics Letters A”
139(1), 1-4.

Bigaj T. (2010a), Dispositional Monism and the Circularity Objection, ,,Metaphysica” 11, 39-47.

Bigaj T. (2010b), How to (Properly) Strenthten Bell’s Theorem Using Counterfactuals, ,,Studies in
History and Philosophy of Modern Physics” 41, 58-66.

Bird A. (2007), Natures Metaphysics, Oxford: Clarendon Press.

Dorato M. (2006), Properties and Dispositions. Some Metaphysical Remarks on Quantum Ontology
[in:] Are There Quantum Jumps? On the Present Status of Quantum Mechanics, A. Bassi, D.
Durr, T. Weber, N. Zanghi (eds.), Melville (NY): American Institute of Physics, 139-157.

Dorato M. (2007), Dispositions, Relational Properties and the Quantum World [in:] Dispositions
and Causal Powers, M. Kistler, B. Gnassonou (eds.), Burlington (VT): Ashgate, 249-270.

Ghirardi G. (2005), Sneaking a Look at God’s Cards, Princeton—Oxford: Princeton University Press.

Ghirardi G. (2008), Collapse Theories [in:] The Stanford Encyclopedia of Philosophy (Fall 2008
Edition), E. Zalta (ed.), URL = <http://plato.stanford.edu/archives/fall2008/entries/qm-collapse/>.

Krips H. (2008), Measurement in Quantum Theory [in:] The Stanford Encyclopedia of Philosophy
(Fall 2008 Edition), E. Zalta (ed.), URL = <http://plato.stanford.edu/archives/fall2008/entries/
qt-measurement/>.

Mittelstaedt P. (1998), The Interpretation of Quantum Mechanics and the Measurement Process,
Cambridge: Cambridge University Press.

Stapp H. P. (1997), Nonlocal Character of Quantum Theory, ,,American Journal of Physics” 65,
300-304.



Quantum Dispositions and the Notion of Measurement 23

Stapp H. P. (2004), 4 Bell-Type Theorem without Hidden Variables, ,,American Journal of Physics”
72, 30-33.

Suarez M. (2004a), Quantum Selections, Propensities and the Problem of Measurement, ,,The British
Journal for the Philosophy of Science” 55(2), 219-255.

Suarez M. (2004b), On Quantum Propensities. Two Arguments Revisited, ,,Erkenntnis” 61(1), 1-16.

Suarez M. (2007), Quantum Propensities, ,,Studies in History and Philosophy of Modern Physics’
38, 418-438.

Thompson 1. J. (1988), Real Dispositions in the Physical World, ,,The British Journal for the Phil-
osophy of Science” 39(1), 67-79.

Thomson-Jones, M. (unpublished manuscript), Dispositions and Quantum Mechanics.

Van Fraassen B. (1991), Quantum Mechanics. An Empiricist View, Oxford: Clarendon Press.

i



