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1. INTRODUCTION

The field of Artificial Intelligence (AI) started very soon after the first American
digital computer ENIAC became operational in 1945. In 1956, key figures working
in this area in the US (Herbert Simon, Allen Newell, Marvin Minsky, and John
McCarthy among others) met for a two-month workshop in Dartmouth which was to
become the official birthplace of the field. By that time, some impressive results had
already been achieved. Newell and Simon had a reasoning program, the Logic Theorist,
that was able to prove most of the theorems in Chapter 2 of Russell and Whitehead’s
Principia Mathematica (McCorduck 2004). Gelernter’s Geometry Theorem Prover
(Gelernter 1959) and Samuel’s checkers program (Samuel 1959) matched human
skills in mathematics and the game of checkers. Within a few years, first expert sys-
tems, to be applied in other areas of human expertise, have been built. MYCIN
(Shortliffe 1976), developed to diagnose blood infections, was able to perform con-
siderably better than junior doctors. These early successes led, understandably, to
overblown expectations. As early as 1958, Simon boasted: “The simplest way [we]
can summarize the situation is to say that there are now in the world machines that
think, that learn, and that create” (Simon 1958: 8) and a few years later: “Machines
will be capable, within twenty years, of doing any work that a man can do” (Simon
1965: 96).

The first signs of difficulties appeared when the solutions developed for small
and well-defined domains were applied in real world scenarios. One problem was
purely computational: many of the AI problems are intractable (Garey, Johnson 1979).
To find the shortest route through n cities, one needs to search through all n! possible
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paths connecting them. When n is small, this can be done almost instantenously,
when n is more realistic (say 50), the problem cannot be solved by any computer in
our lifetime. Most of the AI algorithms were tested in so-called microworlds, limited
domains which contained few objects and few possible actions (an example of such a
microworld for manipulating blocks is shown in Figure 1). Solutions developed for
microworlds simply did not scale up for more realistic domains.

The second difficulty facing AI turned out to be even more intricate. Proving
theorems, playing checkers, or even diagnosing infections did not require knowledge
outside of the domain in question. As soon as the problems become open-ended
(writing a funny story, holding a conversation, or even grocery shopping) common-
sense knowledge becomes indispensable. Even a seemingly simple task of language
comprehension can be insurmountable as it may require large amount of sophisti-
cated knowledge. Consider the following two sentences (Winograd 1972: 33):

The police refused to give the students a permit to demonstrate be-
cause they feared violence.

The police refused to give the students a permit to demonstrate be-
cause they advocated revolution.

What does the word “they” refer to in each of the two sentences? The grammati-
cal structure of the two sentences is identical. Yet we have no difficulty in correctly
understanding who “they” are in each case, because we know who is more likely to
fear violence or to advocate revolution.

Once the importance of commonsense knowledge has been recognized, research
in AI proceeded in two directions. First, such knowledge had to be gathered, for-
malized, and stored to be later used by a computer. In 1984, a large project under the
name of CYC has been initiated by the Microelectronics and Computer Technology
Corporation (MCC) in Texas. The goal of the project was to build a database con-
taining a significant portion of commonsense knowledge possessed by a contempor-
ary human being. The plan was to enter by hand around 100 million assertions. At
any one time as many as 30 people were simultaneously entering data. They ana-
lyzed newspaper articles, encyclopedia entries, advertisements, etc. sentence by sen-
tence. The idea was not to create yet another encyclopedia, but to encode the know-
ledge anyone needs to have before he can understand an encyclopedia. The types of
entries are trivial by our human standards: water flows downhill, putting a hand into
fire hurts, you can’t walk through a closed door, yet they are necessary for any future
thinking machine to understand. By the end of the first six years of the project over
one million assertions have been entered manually into the database, but soon after
that the project’s life at MCC came to an end.1 A database of raw facts is useless un-
                                                

1 Given the huge resources put into the project and its rather unimpressive results, CYC has
often been harshly criticized “[it is] one of the most controversial endeavors of the artificial intelli-
gence history” (Bertino, Piero, Zarri 2001).
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less a machine has a mechanism for applying this knowledge to solve real problems.
Thus, a second important direction of AI research at that time went into formalizing
commonsense reasoning in which planning played a key role. But these efforts very
soon hit a roadblock, the Frame Problem.

2. THE FRAME PROBLEM IN ARTIFICIAL INTELLIGENCE

2.1. Planning

The technical or logical frame problem (as opposed to the philosophical one)
was first discussed by McCarthy and Hayes (1969) in the context of situation calcu-
lus. The situation calculus was an instance of first-order logic designed to formalize
commonsense reasoning. Its primary use has been to formalize planning tasks to be
undertaken by a robot. The ontology of the situation calculus consists of situations,
fluents, and actions. Situations are snapshots of the world at a particular time. A flu-
ent is something that changes over time; boolean fluents are called states. Consider a
world of blocks shown in Figure 1. To indicate that block B is on block A we write:
On(B,A); to indicate that there is nothing on block B, we write Clear(B). To re-
late fluents and situations we write Holds(On(B,A), S1), meaning that block B
is on block A in situation S1. Thus, the complete description of the situation in Fig-
ure 1 can be specified as follows:

Holds(On(B,A), S1)
Holds(Clear(B), S1)
Holds(Clear(C), S1)
Holds(Clear(D), S1)

Figure 1. World of blocks in situation S1
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Actions bring about new situations by changing fluents (states) in previous situa-
tions. Let us assume that there are only two possible actions in our block world:
Stack(X,Y) and Unstack(X,Y) representing stacking and unstacking X on
(from) Y respectively. The effect of the action Stack(X,Y) performed in situa-
tion S1 can be described as:

Holds(On(X,Y), Result(Stack(X,Y), S1))

The complete description of the two actions is specified via axioms of the form:

(Holds(Clear(X),S) ∧ Holds(Clear(Y),S) ∧ X≠Y) → Holds(On(X,Y),
Result(Stack(X,Y),S))

(Holds(On(X,Y),S) ∧ Holds(Clear(X),S)) → Holds(Clear(Y), Re-
sult(Unstack(X,Y),S))

in which all variables are universally quantified. The effects of a sequence of actions
A1,…, An (rather than a single action) can be defined inductively in a straightforward
way:

Result((A1,…, An),S) = Result(An, Result((A1,…, An–1),S))

Now, consider a planning task in which a robot, given the initial situation S1 (as
shown in Figure 1) has to come up with a plan (that is, a sequence of actions α) to
reach a goal where A is on C and D is on A, that is:

Holds(On(A,C), Result(α,S1))
Holds(On(D,A), Result(α,S1))

A straightforward solution to this task is the sequence of actions shown in Figure 2.
Let us specify the first few steps in the ‘proof’ that leads to the required solution:

1. Holds(On(B,A),S1)
2. Holds(Clear(B),S1)
3. Holds(Clear(A),S2), where S2=Result(Unstack(B,A),S1)
4. Holds(Clear(C),S2)
5. Holds(On(A,C),S3), where S3=Result(Stack(A,C),S2)
…

Unfortunately, this is not a valid proof. The first three statements are true: (1) and
(2) were part of the initial specification of S1 and (3) follows from the action axiom
for Unstack and the initial specifications. Statement (4) seems obviously true
(unstacking A from B does not affect any other blocks), yet it is neither a description
of S1, nor can it be derived by means of any action axioms. It is not enough to know
that C is clear in the initial state, but that C remains also clear in the state that results
from the Unstack(B,A)action, that is, that the following is true:
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Figure 2. A plan to have A on C and D on A

Holds(Clear(C), Result(Unstack(B,A),S1))

Again, this step is perfectly natural in commonsense reasoning, yet it is not de-
rivable as a matter of logic. McCarthy and Hayes (1969) suggested a straightforward
way of handling this problem by adding formulas such as the one above (they called
them frame axioms) for every fluent and every action. But the number of such axioms
can be enormous: for m actions and n fluents one needs m × n axioms. For suffi-
ciently large m and n (in practical scenarios they will be large) looking through all
such axioms would dramatically degrade performance of any system. It is also
counterintuitive. If the goal of AI is to build a system that resembles human mode of
reasoning, than this is certainly not correct. When we pick up B from A we do not
remind ourselves that the distance of A from the Sun has not changed, neither did its
temperature or color or any other properties. Last, but not least, such axioms are
context-dependent. In a scenario where removing B from A causes D to be put on C,
the axiom specified above is false.

When an action is performed, some things change and some do not. How can we
say in a concise way which things do not change when a particular action is per-
formed? This is, in a nutshell, the classical frame problem.

2.2. Nonmonotonic Logic

Soon after the frame problem has been identified, a number of approaches have
been proposed to solve it. Most of them extended classical logic to handle the prob-
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lem, but there were also solutions using statistics and connectionist models.2 Among
the logical approaches, non-monotonic logic (Horty 2001) offered a particularly
original and interesting solution. Default logic (Reiter 1980) and circumscription
(McCarthy 1980) were the most prominent proposals to solve the frame problem
using non-monotonic logic. We will discuss default logic in detail.3

The consequence relation of a classical logic is monotonic: if a formula p is a
consequence of a set of formulas S, then p is also a consequence of S ∪{r}, for an
arbitrary formula r. In other words, the set of conclusions we can draw from the
premises grows monotonically with an addition of new formulas to the premises. In
particular, a proof of a formula cannot be invalidated by adding a new formula to the
derivation. But this is not the case in common sense reasoning. We tend to learn
about the relationships in the world by making sweeping generalizations, such as all
swans are white or all birds fly. And then, when we see a black swan or learn about
ostriches, we retract or qualify our previous claims. In this sense, common sense rea-
soning is non-monotonic: a conclusion set need not grow monotonically with the
premise set. If we could formalize this type of common sense reasoning, then we
might be able to solve the frame problem. We could state succinctly that no prop-
erties change as a result of our actions except the ones we explicitly specify. The list
of exceptions can grow in time, yet the no-change claim (modulo the exceptions)
remains in place. This is the approach taken in default logic.

In addition to standard rules of inference, default logic adds default rules. A de-
fault rule is a triple: :α β

γ , where α is a prerequisite, γ is a consequent, and β is the jus-

tification. The meaning of the rule is: if α has been already established, one can add γ
to the set of conclusions assuming that this set is consistent with β. A default theory
is a pair ∆ = <W, D>, in which W is a set of ordinary formulas and D is a set of de-
fault rules. Consider our previous example all birds fly. This can be represented as a
default rule, such that D1= { B(x):F(x)

F(x) } with the meaning if x is a bird, then x flies un-

less we have information to the contrary. If we now learn that Tweety is an ostrich
(hence does not fly), that is, W1= {¬F(Tweety)}, we cannot draw a conclusion that
Tweety flies.

To accommodate new rules of inference, the standard concept of logical conse-
quence had to be modified. The conclusion set 3 associated with a default theory ∆ =
<W, D> is called an extension and is defined as follows: 3 = 1i

∞
=∪ 3i, where:

30 = W,

3i+1 = Th(3i) ∪ {C | A:B
C ∈ D, A ∈ Th(3i), ¬B ∉ 3}

                                                

2 An overview of the solutions to the frame problem is provided in (Kamermans, Schmits 2004).
3 We follow Horty’s (2001) presentation of default logic.
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and Th(3i) is a set of standard logical consequences of 3i. The idea behind this defin-
ition is that we first conjecture a candidate extension for a theory, 3, and then using
this candidate define a sequence of approximations to some conclusion set. If this
approximating sequence has 3 as its limit, 3 is indeed an extension of the default
theory.4 Note that the extension of ∆ = <W, D> in which D is empty is simply Th(W).

One may argue that the concept of an extension in default logic seems more nat-
ural than the notion of consequence in classical logic. A non-empty set of formulas in
classical logic will have a non-empty set of consequences. Not so in default logic.
Consider the following example. Let W2={α, β→¬γ} and D2={ :α γ

β }. If this theory

has an extension, then either ¬γ ∈ 3 or ¬γ ∉ 3. Let us assume that ¬γ ∈ 3. Since ¬γ
is not in 30 and the default rule cannot be applied (since we assumed that ¬γ ∈ 3), ¬γ
cannot be added to any of 3i, hence cannot be in 3. A contradiction. Assume the op-
posite then, that is, ¬γ ∉ 3. The default rule is applicable now, hence β is added to 31.
By the implication β→¬γ, ¬γ is added to 32 and since 3 is a union of 30, 31, 32…, ¬γ
∈ 3. A contradiction again. An incoherent default theory has no extensions. An in-
consistent set of propositions in classical logic implies everything. Arguably, the
former is more intuitive than the latter.

Figure 3. Nixon Diamond

Even more interestingly, a default theory can have multiple extensions. A famous
example (Reiter, Criscuolo 1981) of this case encoded as an inheritance network in
                                                

4 This definition of an extension was presented in (Horty 2001) and is more intuitive that the
‘official’ definition of Reiter’s.
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Figure 3 is called the Nixon Diamond (double lines indicate logical implication, sin-
gle lines indicate default rules, crossed line indicates negation). The facts represented
by this diagram are: Nixon is a Republican, Nixon is a Quaker, Republicans tend not
to be pacifists and Quakers tend to be pacifists. As a default theory these facts can be
stated as: W3={Q(nixon), R(nixon)} and D3={ R (x):P(x) R (X): P(x)

P(x) P(x), ¬
¬ }. This theory has

two extensions, one with P(nixon) and one with ¬P(nixon). Both conclusions are
equally valid, yet they cannot be both entertained at the same time. Again, this seems
like a natural description of commonsense reasoning which cannot be captured in
classical logic.

Finally, it is straightforward to encode by a single default rule the possibly nu-
merous frame axioms. The following rule schema:

Holds(f, s): Holds(f, Result(α, S))
Holds(f, Result(α, S))

says that whenever a fact f holds in situation s, then — if it is consistent to assume
that f still holds after the performance of action α — we should conclude by default
that f still holds after the performance of action α. A reader can verify that the
missing assumption in our planning proof of Section 1, that is:

Holds(Clear(C), Result(Unstack(B,A),S1))

can now be derived using the initial facts about the microworld together with the
above default rule.

Does the default logic solve the frame problem? It certainly solves this particular
instance of the problem, but it turns out that it leads to some very counterintuitive
results in other cases. The following example shown in Figure 4 illustrates the mul-
tiple extension problem.

Hermann belongs to Pennsylvania Dutch (Amish) speakers who actually speak
German. Since he was born in Pennsylvania, he was born in the USA. There are also
two default rules here. One states that Pennsylvania Dutch speakers tend to be born
in Pennsylvania, the other one states that German speakers tend not to be born in the
USA. Common sense would tell us that Hermann was born in the USA. The fact that
he speaks German is incidental and should not lead to the conclusion that he was not
born in the USA (in fact, his speaking German is a result of him being a Pennsylvania
Dutch, hence likely to be born in the USA). According to default logic, however,
both extensions (one with Hermann born in the USA and another not born in the
USA) are equally valid. What was considered an advantage in the case of Nixon
Diamond (both extensions seemed reasonable) is clearly a flaw here. Default logic
does not distinguish between extensions as it has no tools to do that. To find an in-
tended extension, that is, to draw correct conclusions from arbitrary sets of facts we
need the ability to identify information relevant to a particular context. Relevance,
however, is not something that can be easily codified in logic.
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Figure 4. An illustration of the multiple extension problem

Circumscription, another non-monotonic logic approach to solving the frame
problem, fared no better than default logic. A few years after McCarthy presented his
solution, Hanks and McDermott (1987) offered a convincing scenario, called the
Yale Shooting Problem, showing that the proposed solution leads to an anomaly. The
situation they describe is as follows. We have an unloaded gun, which we then load,
wait a while and fire it at our best friend Fred. Formalizing this scenario in logic and
using circumscription to conclude what the outcome is, leads to two different solu-
tions. According to one of them, Fred dies (as expected), according to another one
(equally valid) gun mysteriously unloads itself and Fred survives. The idea of cir-
cumscription was to minimize changes that may occur in the world as a result of ac-
tions. In both solutions, the same number of default assumptions is violated: in the
first one, Fred’s staying alive, in the second one, gun’s staying loaded. Common
sense tells us that Fred should be dead, yet the facts and the particular logic em-
ployed here support with the same force both conclusions. We are faced again with
the multiple extension problem.

A number of approaches have been offered to solve the Yale Shooting Problem
in an attempt to save the solution to the frame problem.5 None of them was fully suc-
                                                

5 Morgenstern (1996) provides an overview of many such solutions.
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cessful. Many people, even within AI community, think that “the solutions to the
frame problem have all failed in at least one respect” (Morgenstern 1996). Even
those who believe that the problem is “more-or-less solved” (Shanahan 1999), point
out to difficulties that still lie ahead of any fully satisfactory solution (concurrent ac-
tions, actions with non-deterministic effects, continuous change, etc). But it was in
philosophy where the frame problem took an entirely new dimension. Rather than
trying to solve the problem, the philosophers asked themselves a different question:
why is the problem so hard? We look at some of the answers in the next section.

3. THE FRAME PROBLEM IN PHILOSOPHY

The frame problem has been with us for over 40 years now. Dozens, if not hun-
dreds of research papers and a number of conferences were devoted exclusively to this
topic (Pylyshyn 1987), (Ford, Pylyshyn 1996). It has sparked heated debates about AI
methodology. It has led some researchers to declare the logic-based approach to
commonsense reasoning a failure. Why has a single technical problem become a source
of so much frustration, even disillusionment with AI? After all, there are many un-
solved problems in other sciences (for example, “Does P = NP?” in computer science),
yet they do not threaten the existence of an entire discipline. There may be good rea-
sons, however, why the frame problem is unique (Morgenstern 1996).

• The problem does not seem to be that difficult. It is straightforward to state
that most things do not change as time passes. Yet logic cannot capture this
rather obvious observation.

• The problem is central to AI. A solution is necessary for planning and it is
hard to see how one can build an intelligent machine without the ability to
plan. It is thus quite different from problems like “P = NP?” which are inter-
esting and important for computer science, yet not crucial for its progress.

• So much work has been put into solving the problem and so little progress
has been made. A number of solutions have been proposed to solve it, only to
be shown, one by one, to be incomplete in one aspect or another. There is a
feeling that these solutions have not touched the heart of the problem.

If the problem is so easy to state, yet so hard to solve, then, perhaps, it is just a
symptom of a different, more general problem and it is that problem that we need to
solve first. Or it is a series of closely interconnected problems involved, and “there
would be little point in ‘solving’ the frame problem if it meant ‘unsolving’ some
other problem” (Janlert 1996). This is where the problem was taken up by philoso-
phers and given a new interpretation. Some of their opinions may seem radical (at
least in the eyes of the AI community6), but they shed interesting light on AI and
cognitive science in general. We discuss in detail three such views.
                                                

6 Patrick Hayes went as far as to say about one of them: “Fodor doesn’t know the frame prob-
lem from a bunch of bananas” (Hayes 1987: 132).
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3.1. Dennett’s Epistemological Holism

Dennett readily admits at the outset that he appropriates the name “frame prob-
lem” to cover more than just the narrow technical problem defined by McCarthy and
Hayes. According to Dennett, the problem arises from our widely held assumptions
about the nature of intelligence and it is “a new, deep epistemological problem —
accessible in principle but unnoticed by generations of philosophers — brought to
light by the novel methods of AI, and still far from being solved” (Dennett 1987:
42). To illustrate his understanding of the problem, Dennett presents the following
scenario (Dennett 1987: 41–42):

Once upon a time there was a robot, named R1 […]. One day its designers arranged for it to
learn that its spare battery […] was locked in a room with a time bomb set to go off soon. R1
located the room […] and formulated the plan to rescue the battery. There was a wagon in the
room, and the battery was on the wagon, and R1 hypothesized that a certain action […] would
result in the battery being removed from the room. Straightway it acted, and did succeed in get-
ting the battery out of the room before the bomb went off. Unfortunately, however, the bomb
was also on the wagon. R1 knew that the bomb was on the wagon, but did not realize that pull-
ing the wagon would bring the bomb out along with the battery.

R1 did not pay attention to the ramifications of his actions. Thus, the designers
decided that R1 must be redesigned to be able to recognize all the implications of his
actions.

They called their next model, the robot-deducer, R1D1. They placed R1D1 in much the same
predicament that R1 succumbed to, and […] it began, as designed, to consider the implications
of such a course of action. It had just finished deducing that pulling the wagon out of the room
would not change the color of the room’s walls, and was embarking on a proof of the further
implication that pulling the wagon would cause its wheels to turn more revolutions that there
were wheels in the wagon — when the bomb exploded.

This time, R1D1 was equipped with all necessary knowledge to perform the action
correctly, yet it failed to reach the proper conclusion in reasonable amount of time.
This, one might say, is the computational aspect of the frame problem. The obvious
way to avoid it is to appeal to the notion of relevance. Only certain properties are rele-
vant in the context of any given action and we can confine the deduction only to those.

Back to the drawing board. ‘We must teach it the difference between relevant implications and
irrelevant implications,’ said the designers, ‘and teach it to ignore the irrelevant implications’.

But what is relevant in this case? Relevance clearly depends on a context. If the
battery happened to be on the floor, then the fact that the bomb was on a wagon
would be irrelevant to the action of picking up the battery and removing it from the
room. If the temperature outside the room were –100oC (which would freeze the
bomb), then pulling the wagon out of the room would have been a safe course of ac-
tion. In this case, the temperature — to which the robot paid no attention before —
would be suddenly relevant. A moment of thought should suffice to see that specify-
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ing what propositions are relevant to what context is hopeless. Contexts are not in-
dependent from one another, one needs to appeal to a larger context to determine
significance of elements in a narrower context (for example, to recognize two dots as
eyes in a picture, one must have already recognized the context as a face). But then,
as Dreyfus put it: “if each context can be recognized only in terms of features se-
lected as relevant and interpreted in a broader context, the AI worker is faced with a
regress of contexts” (Dreyfus 1992: 189).

So how do humans do it? Most of it we probably learn from experience, some of
it may be innate. But the crucial question for AI is how this knowledge is stored and
processed. In great majority of our actions we do not consciously think through our
plans. In fact, the relevant knowledge rises to the surface only when we make mis-
takes and need to reconsider our course of action or plan an entirely novel action.
But even in these cases introspection is not of much use. We do not ponder upon
facts one by one, we are somehow capable to pay attention only to the relevant ones.
Also, our information processing is so fast that it cannot involve drawing thousands
of interim conclusions. We operate on a portion of our knowledge at any moment
and that portion cannot be chosen by exhaustive consideration.

A great discovery of AI is the observation that a robot (a computer) is the fabled
tabula rasa. For it to operate in a real world, it must have all the information expli-
citly specified and then organized in such a way that only the relevant portion of it is
used when it is time to act. So far we have no idea how to do that. The philosophical
frame problem, according to Dennett, is this: “How is it possible for holistic, open-
ended, context-sensitive relevance to be captured by a set of propositional, language
like representation of the sort used in classical AI?” (Shanahan 1999).

3.2. Fodor’s Metaphysical Relativism

Fodor takes the frame problem one step deeper into the philosophical thicket.
Most of the solutions of the classical frame problem follow the “sleeping dog” strat-
egy (McDermott 1987), that is, the assumption that most events leave most of the
facts untouched. Both default logic with its default assumptions as well as circum-
scription, which minimizes the changes resulting from actions, follow that strategy.
In fact, the assumption of metaphysical inertia gives rise to the frame problem in the
first place as we are trying to formalize the fact that most things do not change.
Fodor challenges this assumption. To say that most properties do not change as a re-
sult of actions, one must make certain ontological commitments. The properties we
assign to the objects in the world must indeed be inert to make a sweeping claim that
most of them do not change with time. But what justifies this metaphysical assump-
tion? To make his point more vivid, Fodor invents a new property of physical parti-
cles, the property of fridgeon: x is a fridgeon iff x is a particle at t and Fodor’s fridge
is on at t. Now, every time Fodor turns on or off his fridge, he changes the state of
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every physical particle in the universe. The assumption of metaphysical inertia no
longer holds and the sleeping dog strategy (widely accepted in AI) will no longer
solve the frame problem.

The conclusions Fodor draws from this observation are far-reaching. The frame
problem is empty unless we have the right ontology to go with it. Clearly, properties
such as fridgeon should not be a part of this ontology because they do not represent
computationally relevant facts. So how do we choose the right ontology? Fodor
draws an analogy with science where the principle of scientific conservatism (similar
to the sleeping dog strategy) is obeyed: alter the minimum possible amount of prior
theory to accommodate new data. Just as we do not know how to build the simplest
canonical notation for scientific theories to respect that principle, we do not know
what canonical representation of the world is appropriate for AI. The frame problem
is an indication of that difficulty.

It seems, however, that Fodor’s argument applies as much to commonsense rea-
soning as it does to AI. First of all, one needs not to invent new “kooky” concepts to
notice that some properties are just irrelevant when it comes to reason about every-
day actions. A perfectly “natural” property of location, when applied to elementary
particles, changes even more often than the property of fridgeon. We ignore it pre-
cisely because it is irrelevant for pretty much any of our actions. Perhaps the ques-
tion of choosing the right ontology is just the question of choosing relevant prop-
erties within any (reasonable) ontology. In that sense, Fodor’s argument can be reduced
to Dennett’s problem of relevance.

Fodor was not the only one to bring the issue of metaphysics into the discussion
of the frame problem. Janlert (Janlert 1987) believes that McCarthy’s notion of
situation is an inappropriate basis for a metaphysics of change and the frame problem
is just a problem of finding the right metaphysics. Fetzer (1991) took Fodor’s ana-
logy with science one step further and argued that the frame problem is an instance
of the problem of induction.7 This view has been rather controversial, however (see
Dennett 1987: 52 or Morgenstern 1996: 110).

3.3. Dreyfus’s Methodological Nihilism

Dreyfus has been an ardent critic of AI since 1960s. His views were so extreme
that hardly anyone within AI community took him seriously at that time. Yet many of
Dreyfus’s arguments were sound and his predictions about the future of the field
have been mostly correct. The frame problem did not feature large in these argu-
ments, because — contrary to Dennett or Fodor — Dreyfus did not think of it as a
real philosophical problem. It is a pseudoproblem spawned by a misguided research
program. It may very well be insoluble, but we do not need to worry about it.
                                                

7 Indeed, Fodor’s concept of fridgeon serves similar purpose as Goodman’s grue in his discus-
sion of the new riddle of induction (Goodman 1954).
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Dreyfus’s criticism of AI touched the very heart of the discipline: its philosoph-
ical foundations. Although AI researchers never discussed these foundations expli-
citly, they “had taken over Hobbes’s claim that reasoning was calculating, Descartes’
mental representations, Leibniz’s idea of “universal characteristic” — a set of primi-
tives in which all knowledge could be expressed, Kant’s claim that concepts were
rules, Frege’s formalization of such rules, and Wittgenstein’s postulation of logical
atoms in his Tractatus” (Dreyfus 2007: 1137). These assumptions were behind the
famous physical symbol system hypothesis endorsed by Newell and Simon8: “A
physical symbol system has the necessary and sufficient means for general intelligent
action” (Simon, Newell 1976: 116). According to this hypothesis, human thinking is
just symbol manipulation and any machine that implements the same rules for sym-
bol manipulation can be intelligent.

Dreyfus questioned not only the physical symbol system hypothesis, but also
several other implicit tenets shared by AI community. He organized them into the
following four assumptions (Dreyfus 1992):

Biological assumption: the brain is a symbol-manipulating device like
a digital computer.

Psychological assumption: the mind is a symbol-manipulating device
like a digital computer.

Epistemological assumption: intelligent behavior can be formalized
and thus reproduced by a machine.

Ontological assumption: the world consists of independent, discrete
facts.

Dreyfus drew arguments against these assumptions from philosophy of Heidegger
and Merleau-Ponty. He pointed out three aspects of intelligent behavior almost
entirely ignored by AI. First, most of our everyday activities rely on skills, that is
knowledge how, rather than on conscious deliberation over facts, that is knowledge
that. Second, the body is an integral part of intelligent behaviour: our ability to re-
spond to new situations involves a situated, material body. Third, human behavior is
not goal-oriented but value-oriented and as such is always dependent on context or
situation. Dreyfus argues convincingly that these aspects of human intelligence can-
not be reproduced, or even simulated, within traditional AI.

Where does the frame problem fit in Dreyfus’s attack on AI? Well, the persist-
ence of the problem is yet another indication that there is something deeply flawed
with AI methodology. Notice that we, humans, never face this problem in our own
behavior. It was only discovered when logic-based AI attempted to build a system
that was purportedly modeled on human intelligence. The frame problem is not a real
problem. It is an aberration created and kept alive by the wrong model of human in-
                                                

8 In fact, this is still an implicit assumption of most AI research today.
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telligence. Change the model and the problem will go away. Ptolemaic cosmology
puzzled for centuries over the mystery of Venus’s phases — the problem disappeared
with the advent of the heliocentric model. AI needs its own Copernican revolution.

4. CONCLUSIONS

The frame problem clearly means different things to different people. Besides the
three philosophical perspectives presented here, one should mention its fame reach-
ing psychology (it is an instance of a symbol grounding problem (Harnad 1993)),
philosophy of science (the frame problem as a diagnostic tool to distinguish common-
sense reasoning from prediction using scientific theory (Sprevak 2005)) or even ethics
(the frame problem shows that human moral normativity cannot be systematized by
exceptionless general principles (Horgan, Timmons 2009)). Interestingly, the discus-
sion of the problem subsided within the AI community. It is hard to believe that every-
one has accepted Shanahan’s claim that the problem is “more-or-less solved” and
moved on. If that were the case, where are the thinking machines that this problem
has prevented us from building? A more likely explanation is that after so many
failed attempts researchers lost faith that the problem can be solved by logic. Indeed,
since 1980s there has been movement to break away from the traditional logic-based
methodology of AI, most notably by Rodney Brooks at MIT. Brooks took to heart
Dreyfus’s arguments and attempted to build robots following a different methodo-
logical paradigm (Brooks 1991) that avoids running into the frame problem. The
success of this project has been rather limited,9 but perhaps the only way to over-
come the frame problem is to avoid it rather than solve it.
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