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Abstract
The paper reconstructs the methods used by Schrödinger in the construction of wave mechanics
as given in his four Mitteilungen. These methods are described from the point of view of modern
philosophy of science, with a focus on the relationships between scientific theories and on the
reconstruction of the structure of scientific laws and the relations between scientific laws. After
reconstructing the derivation of the first equation in Mitteilung 1, it analyzes the methodology of
the optical-mechanical analogy in Mitteilung 2 and reconstructs the two heuristic pathways that
led to the construction of wave equations as the basis of wave mechanics in the first two Mittei-
lungen. Finally, it addresses the methods of generalization, application, and explanation by which
the second, third, and fourth Mitteilungen are constructed.
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The transition from Hamilton’s partial differential equation
to the wave equation . . . signifies for mechanics exactly the
same as for optics the transition from ray optics . . . to wave
optics proper. One can speak of an undulatory theory of me-
chanics. (Schrödinger 1926b: [14])

In the last fifty years or so, the formation of Erwin Schrödinger’s wave
mechanics has been the subject of detailed analyses by historians of science.1

This paper takes a different approach to Schrödinger’s wave mechanics. In-
stead of providing a historical analysis of its formation, it aims to reconstruct
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the methods used by Schrödinger, as given in his four Mitteilungen, to arrive
at wave mechanics. These methods are described from the perspective of
contemporary philosophy of science and, more specifically, the idealizational
conception of science proposed by Leszek Nowak (1971, 1972, 1977, Nowak,
Nowakowa 2000), whose focus on the structure of scientific laws and their
interrelations will enable us to understand the methods used by Schrödinger
to build the inner structure of Mitteilungen 1-4 and see how these methods
shed light on the relations that obtain between these Mitteilungen.2

In Section 1, I reconstruct the derivation of the first wave equation in
Mitteilung 1 and show how Schrödinger, by drawing on inter-theoretic rela-
tions, determined the value of the constant K, which appears at the beginning
of the derivation. I then analyze the optical-mechanical analogy in Mitteilung
2 and reconstruct the two heuristic pathways that, related via the principle of
correspondence, led Schrödinger in the first two Mitteilungen to the formu-
lation of the wave equations, which form the basis of wave mechanics. Sec-
tion 2 addresses the methods of generalization, application, and explanation
by which the second, third, and fourth Mitteilungen are constructed. The
conclusion summarizes the methodological moral of Schrödinger’s construc-
tion and the relations between the four Mitteilungen.

1. THE METHODS OF CONSTRUCTIONS OF THE WAVE EQUATIONS
IN MITTEILUNG 1 AND MITTEILUNG 2

Schrödinger begins by specifying the type of entity to which his new
quantum postulate should initially be applied: it is the non-relativistic and
unperturbed hydrogen atom. But although he starts with the simplest atom,
he claims that his “new conception is capable of generalization” (1926a: 361).3

His next step is to employ Hamilton’s partial differential equation:4

(1-M1) , .
S

H q E
q

 ∂ = ∂ 
                                                   

2 For a more recent development of the views of Nowak, see (Hanzel 2015); for their
application to physics, see, e.g., (Hanzel 2008, 2013).

3 All the quotes from Schrödinger’s Mitteilungen cited in this paper are in my trans-
lation.

4 The numbers of formulas, supplemented by the symbols “-M1,” “-M2,” “M3,” and “-M4,”
correspond to the numbers from Schrödinger’s first, second, third, and fourth Mitteilung,
respectively. Starred numbers placed into square brackets indicate formulas not used by
Schrödinger.



THE METHODS OF CONSTRUCTION IN SCHRÖDINGER’S MITTEILUNGEN 19

S stands for action, for which Schrödinger substitutes

(2-M1) S = K ln ψ.

K is a constant, while ψ is a function initially characterized mathematically,
not physically, as a product of functions, each depending on only one coordi-
nate. By substituting (2-M1) into (1-M1), Schrödinger obtains the following:

(1′-M1) , .
K

H q E
q

ψ
ψ

 ∂ = ∂ 

Then, instead of searching for a solution to this equation, Schrödinger
transforms (1′-M1) into a quadratic form, of ψ and of ψ’s first derivatives, that
is equal to zero. This means is that he looks for a function ψ such that it is
real, finite, and differentiable to the second order so that, for its arbitrary
variation, the integral (over the whole space of coordinates) is stationary. In
other words, Schrödinger arrives at a variation problem, which he specifies
for the case of a Keplerian motion. For this case, the energy of an electron
with charge e and mass m moving in a Coulomb field is:

([1*])
2

2 2 21
( ) .

2 x y y

e
E p p p

m r
= + + −

Then, by taking into account ([1*]) together with (2-M1) and the equa-
tions: px = ∂S/∂x, py = ∂S/∂y, pz = ∂S/∂z, one obtains:

(1′′-M1)
2 2 2 2

2
2

2
0.

m e
E

x x x rK

ψ ψ ψ ψ
 ∂ ∂ ∂     + + − + =      ∂ ∂ ∂       

By subjecting (1′′-M1) to the variation procedure, Schrödinger obtains two
conditions under which the variation yields zero; they are as follows:5

(5-M1)
2

2

2
0.

m e
E

rK
ψ ψ

 
∆ + + = 

 

(6-M1) 0.df
n

ψδψ ∂ =
∂∫

Next, Schrödinger subjects (5-M1) to a series of transformations and arrives
at the following formula:6

                                                   

5 The expression df stands for the element of closed surface in infinity; δn stands for
the differential of a line element perpendicular to this surface.

6 For details on these transformations, see (Mawhin, Ronveaux 2010).
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(19-M1)
4

2 2
.

2l

me
E

K l
− =

He interprets the formula physically as follows (1926a: 371):

The well-known energy-levels of Bohr are thus obtained corresponding to the Balmer-
-terms, if the constant K, which we had to introduce in (2[-M1]) for reasons of dimen-
sion, is assigned the value

(20-M1) .
2

h
k

π
=

Then, one obtains

(19′-M1)
2 4

2 2

2
.

l

me
E

h l

π
− =

It is worth noting that in order to derive the value of K, Schrödinger had
had to compare formula (19-M1) with Bohr’s formula for the energy radiated
by the formation of one of the stationary states of a hydrogen atom as derived
in his paper “On the Constitution of Atoms and Molecules.” This formula is as
follows (1913: 8):

([2*])
2 4

2 2

2
.

me
W

hτ
π

τ
=

Thus, the derivation of the value of the constant K in the first Mitteilung
is tied to the derivation of the formula for Wτ in Bohr’s 1913 theory of the hy-
drogen atom.

The dependence of the determination of the constant K on Bohr’s theory
of 1913 means, in turn, that the interpretation of equation (5-M1) as a quan-
tum equation is also tied to Bohr’s theory. Only by substituting into this
equation the value h/2π for K does one obtain:

([3*])
2 2

2

8
0,

m e
E

rh

πψ ψ
 

∆ + + = 
 

where the presence of Planck’s constant indicates that it is already a quantum
equation.

Let me now turn to Mitteilung 2. Here, Schrödinger’s construction of
wave mechanics follows a different route than it did in Mitteilung 1. As he
sees it, it aims at the clarification of the “general relation that exists between
the Hamiltonian partial differential equation (H.P.) of a mechanical problem
and the ‘corresponding’ wave equation” (1926c: 489).
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Schrödinger reflects on the analogy, going back to William R. Hamilton,
between classical mechanics and ray optics, and where the former, in its
Hamiltonian form, was derived from ray optics.7 The starting point here is
the partial differential equation:

(1-M2) ( , ) ( ) 0,k k
k

W W
T q V q

t q

∂ ∂+ + =
∂ ∂

where W is Hamilton’s principal function, T is the kinetic energy, and V is po-
tential energy. In order to solve this equation, Schrödinger chooses the Ansatz

(2-M2) W = –Et + S(qk).

By substituting (2-M2) into (1-M2), one obtains

(1′-M2) 2 ( , ) 2( ).k
k

W
T q E V

q

∂ = −
∂

Schrödinger then transforms this equation, by drawing on a non-Euclidean
metric, into the following two equivalent equations:

(1′′-M2) (grad W)2 = 2(E – V).

(1′′′-M2) |grad W| = 2( ).E V−

The function W is viewed by Schrödinger as a family of surfaces with W =
const, which then enables him to consider a system of waves, where W = const
refers to the surface of these waves. Next, Schrödinger derives the formula for
the normal velocity u with which these surfaces are propagated:

(6-M2)
d

.
d 2( )

s E
u

t E V
= =

−

However, despite the success of physical descriptions based on the anal-
ogy between optics and mechanics, Schrödinger makes a fundamental turn in
his approach. He declares:

Although the preceding deliberations refer to wave surfaces, velocity of propagation, and
the Huygens principle, the analogy we are drawing is not between mechanics and
wave optics, but between mechanics and geometrical optics. This is because the
concept of rays, which is of chief concern for mechanics, belongs to geometrical optics; it
is only there that it has a clearly defined meaning. (1926c: 495)

The conclusion Schrödinger draws from this analogy between mechanics and
optics is that:
                                                   

7 See Hamilton’s works in (Conway, Singe 1931).
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The analogy obtains precisely with a geometrical, or, indeed, with a primitive wave
optics and not with a fully developed wave optics. ... In order to preserve the analogy in
the course of successive wave-theoretical development of the optics of q-space, one
has to make sure not to depart markedly from the limiting case of geometrical optics —
say, by choosing the wavelength to be small compared with all the dimensions of
the trajectories. In which case, however, the addition does not teach us anything new.
(1926c: 496)

In order to make the move to a fully developed wave theory, Schrödinger
brings in two more pieces of information. The first is “that our classical me-
chanics fails for very small trajectories and very great curvatures of tra-
jectories” (1926c: 496) and the second is that geometrical optics, as an “‘optics
with an infinitely small wavelength’” (1926c: 497), fails “as soon as the ‘obsta-
cles’ and ‘openings’ are not large any more compared with the real finite wave-
length” (1926c: 497).

Based on these two pieces of information, he draws the conclusion about
the possibility of an analogy between these two failures in the following sense:

Perhaps, our mechanics is a complete analogy of geometrical optics and as such [the
analogy is] false  . . .  it fails as soon as the radii of curvature and the dimensions of
the trajectory are not large anymore compared to a certain wavelength. (1926c: 497)

As a way out of this failure, he suggests “to search for an ‘undulatory
mechanics,’ and the most obvious way to accomplish this is by developing
Hamilton’s picture wave-theoretically” (1926c: 497). He does this by using
the quantum formula for the frequency ν:

(11-M2) .
E

v
h

=

Because, in such a case, the energy is E = hν, by substituting for E in (6-M2),
one obtains:

(6′-M2) .
2( )

hv
u

hv V
=

−

Schrödinger’s final steps in the introduction of the wave equation in the
second Mitteilung are as follows (1926c: 509). He presupposes the validity of
the following equation for the wave function ψ:

(18-M2) div grad
2

..1
0,

u
ψ ψ− =

which he views as valid for processes that depend on time only via the factor
e2πivt; that is, ψ(q, t) = ψ(q) e2πivt. By substituting this formula and (6′-M2) into
(18-M2), he obtains:
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(18′-M2) div grad
2

2

8
( ) 0,hv V

h

πψ ψ+ − =

or

(18′′-M2) div grad
2

2

8
( ) 0.E V

h

πψ ψ+ − =

What are the methods Schrödinger employs in the inferences involved in
his reasoning about the analogies between the formulas of mechanics and
optics, and about the analogies of the failures of these formulas in certain
physical conditions, that ultimately lead him to equation (18′-M2)?

In order to reconstruct these methods it is necessary to understand the
methodological nature of a special form of the correspondence principle that
underlies Schrödinger’s reasoning about those analogies.8 Its nature is that of
a relation between two already existing theories: one historically prior and
one historically later, and where from the point of view of the historically
later theory, one can, under certain conditions, derive formulas which, even
though still part of the historically later theory, bear a similarity to formulas
already derived in the historically prior theory. The difference between the
formulas derived in the historically prior theory and the formulas derived in
the framework of the historically later theory is accounted for by the fact that
the former formulas are embedded in a network of concepts that is different
from the network of concepts in which the latter formulas are embedded.9

This holds, for example, for Sommerfield’s and Runge’s (1911) wave-theoreti-
cal derivation of the equation for the eikonal, referred to by Schrödinger in the
second Mitteilung, where the eikonal and the equation for the eikonal had
already been introduced in the framework of ray optics (Bruns 1895).10 The
wave-theoretical derivation is based on the use of the differential equation:

([4*]) ∆u + k2u = 0,
                                                   

8 The idea that a form of the correspondence principle is at work in the second Mitteilung
was suggested to me by (Joas, Lehner 2009). As to the correspondence principle, I found
(Post 1971, Radder 1991) very helpful. It remains an open question that I do not address
here whether the correspondence principle that is at the basis of Schrödinger’s reasoning
about analogies is the same as Bohr’s understanding of the correspondence principle.

9 This holds also, e.g., for the relation between relativistic mechanics and pre-relativistic
mechanics. The derivation of formulas in the framework of relativistic mechanics that are
similar to formulas in pre-relativistic mechanics is possible only after relativistic mechanics
has assigned a prominent role to light and its velocity c. Only then can one employ the
condition under which the derivation can be performed — namely, that velocity v of objects is
much smaller than c; v << c. In the framework of pre-relativistic mechanics, neither light
nor its velocity has a prominent role.

10 On this function and equation, see also (Klein 1901).
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where u stands for the excitation of light (separated from the factor eivt) and k
is the wave number related to the wavelength λ by means of k = 2π/λ. The
very derivation is then performed, after a sequence of computations, by in-
troducing the condition that 1/k is extremely small.

The difference between the original ray-optical equation for the eikonal
and the wave-theoretical derivation of the equation for the eikonal is that the
latter derivation is embedded in a theory that involves concepts that are ab-
sent from ray optics. So, for example, the differential equation ([4*]) is ex-
plicitly characterized as a “differential equation of wave optics” (1911: 290)
and the function u employed in it is characterized as being measured by one
of the “electric or magnetic components” (1911: 290-291) of light’s excitation
— that is, this equation and the whole derivation of the equation for the eik-
onal, is already embedded in the electro-magnetic wave theory of light
whose central concepts are absent from geometrical optics.

The absence of central concepts of wave optics in ray optics is emphasized
by Sommerfeld and Runge, who — when moving temporarily from a wave-
-optical to an exclusively ray-optical treatment of certain phenomena —
declare:

We thus return to the point of view of pure geometric optics, which proceeds from the
rectilinearity of rays and the law of refraction as empirical data and knows nothing
about wave surfaces. (Sommerfeld, Runge 1911: 287; emphasis added)

The heuristic ends to which the correspondence principle is employed in
the second Mitteilung derives from the features of the correspondence principle
just described. Once it is possible, under certain conditions in the framework
of a historically later theory, to derive formulas that are similar to formulas
already derived in a historically prior theory, then it is also possible to infer
from the knowledge about those conditions the conditions under which the
historically prior theory fails. In the case of the Sommerfeld-Runge derivation,
it is the realization that ray optics fails once 1/k acquires large values; under
this condition, “the laws of geometrical optics are no longer a sufficient ap-
proximation” (1911: 496). Thus, so as equation λ = 2π/k holds, ray optics fails
when the wavelength of the rays has such large values that it is comparable to
the dimension of the trajectory along which the rays propagate.11

                                                   

11 The same methodological principle holds for pre-relativistic mechanics. Once it is
possible to derive the formulas of relativistic mechanics from analogous formulas of pre-
relativistic mechanics by applying the condition v << c, then it is possible to infer that pre-
relativistic mechanics fails when the velocity of the objects becomes comparable with the
velocity of light, v ≈ c.
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This explains why Schrödinger refers to the Sommerfeld-Runge article in
a footnote of the second Mitteilung (1926c: 496); he employs this realization
as a heuristic principle in his movement toward a wave mechanics he is con-
structing.

From the methodological point of view, it is also worth noting that
Schrödinger constructs his wave mechanics (in the form of wave equations
(5-M1) and (18′-M2)) by moving along two different paths — one, in the first
Mitteilung, originating from Hamilton’s mechanics, and another, in the sec-
ond Mitteilung, originating from wave optics. Schrödinger’s wave mechanics
thus lies at the intersection of two different paths.

Once this is taken into account, it is possible to understand a specific
feature of the relation between these two paths and thus also between the
first and second Mitteilungen. Namely, that the justification of the move-
ment from Hamiltonian mechanics to the wave equation (5-M1) in the first
Mitteilung is given only post festum — i.e., in the framework of the second
Mitteilung, where the necessity of that movement is justified by stating “that
our classical mechanics fails for very small trajectories and very great cur-
vatures of trajectories” (1926c: 496).

Figure 1 represents the heuristics leading to the first two Mitteilungen set
against a historical background.12

Fig. 1. Schrödinger’s heuristics leading to the first and second Mitteilungen
and its historical background

The downward-pointing arrow indicates that Schrödinger had to draw on
Bohr’s formula ([2*]) to determine the value of the constant K introduced in
                                                   

12 For a different figure, see (Joas, Lehner 2009: 346).
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the first Mitteilung. The expressions s ≈ λk and R ≈ λk state that the dimen-
sions s of the trajectories and the radii R of their curvature are compatible to
a certain wavelength λk. The dashed arrow means that Schrödinger acquired
the knowledge, initially stated in optics, that, under these conditions, ray op-
tics fails and it is necessary to switch to wave optics, and he then employed
this knowledge from optics in a heuristic manner and applied it in the second
Mitteilung. In the second Mitteilung, he used this knowledge to justify the
move from wave optics to wave mechanics. The expressions s <<< and C >>>
stand for Schrödinger’s claim (1926c: 496) that Hamiltonian mechanics fails
when the dimensions of the trajectories are very small and their curvature is
very large.

The dotted arrow indicates that the information about the conditions under
which this failure takes place is, even if it justifies the move from mechanics
to wave mechanics in the first Mitteilung, stated only post festum in the second
Mitteilung. The heuristic movement from ray to wave optics is indicated at
the bottom of the figure. Young and Fresnel are mentioned as examples of
physicists who participated in the movement from ray to wave optics.13

Let me now turn to the methods used in the second Mitteilung after
Schrödinger proposed wave equations (18′-M2) and (18′′-M2). Both of them
had been derived from wave equation (18-M2), whose introduction had been
accompanied by the following words of caution (1926c: 509):

The wave equation has not been used explicitly in this communication and has not
been stated yet. The only datum for its construction is the wave velocity, given by
(6[-M2]) and (6′[-M2]) as the function of the parameter of mechanical energy or the
frequency; and, needless to say, the wave equation is not uniquely defined by
this datum. It is not at all certain that it must definitely be of the second order; only
considerations of simplicity lead us to try this.

Thus, at this point, wave equation (18-M2) has the status of a tentative
conjecture, which is inherited by the quantum wave equations (18′-M2) and
(18′′-M2) even after equation (18-M2) has been combined with the “datum”
(6-M2) and (6′-M2). In order to give some credence and validity to his conjec-
ture, Schrödinger uses equation (18′′-M2) as the starting point for a quan-
tum-mechanical treatment of four physical systems, all of which are restricted
to the nonrelativistic case and with no magnetic field being at work. These
four systems are: the Planck oscillator, a rotator with a fixed axis, a rigid ro-
tator with a free axis, and a nonrigid rotator (diatomic molecule).

From the point of view of this paper, it is worth noting that Schrödinger
reflects on the specific properties of each system and, based on those proper-

                                                   

13 For details on this movement, see (Darrigol 2012).
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ties, uses equation (18′-M2) to derive a wave equation for that system. Here,
I only deal with Planck’s oscillator and the rotator with a fixed axis.

For the oscillator, Schrödinger first considers the case of a one-dimen-
sional oscillator, and derives the wave equation

(22-M2)
2 2

2 2
02 2

d 8
( 2 ) 0.

d
E v q

q h

ψ π π ψ+ − =

He then moves from the case of a one-dimensional oscillator to the case
with several dimensions (space-oscillator, rigid body) and reflects on the pos-
sible modifications of the formula for the energy spectrum initially derived
for the one-dimensional case.

In the case of the rotator with a fixed axis, for A as the moment of inertia
and φ as the angle of rotation, the wave equation is

(29-M2)
2 2

2 2

1 d 8
0.

dA h

ψ π ψ
ϕ

+ =

2. THE METHODS OF THE MITTEILUNGEN

2.1. METHODOLOGICAL PRELIMINARIES

If one looks from the point of view of philosophy of science, at the way
Schrödinger formulates the wave equations in the first and second Mitteilun-
gen, one can discern a recurrent methodological pattern.

When Schrödinger states or derives a wave equation, he always does so by
considering the type of entities to which the wave equation should apply as
well as the ideal conditions, idealizations, that the entities of this type should
satisfy. So, for example, the first wave equation, (5-M1), is stated for the hy-
drogen atom under the idealization that no external forces act on it and the
velocity of its electron is much smaller than the velocity of light. The same
method is applied by Schrödinger in the formulation of the wave equation for
the oscillator, (22-M2). Equation (22-M2) is stated for an oscillator under the
following three idealizations: from all the possible N dimensions, N – 1 is set
to zero; the oscillator is a non-relativistic one, and it is not subject to the ac-
tion of a magnetic force.

According to Nowak (1971, 1972, 1977, Nowak, Nowakowa 2000), the
triplet consisting of equation, type of entities, and idealizations is constitu-
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tive of the structure of scientific laws. Following Nowak, we can express this
structure like this:

(1) L(k): ∀x[Cmod1x = 0 & Cmod2x = 0 & … & Cmodkx = 0 → Fx =
fk(H1x, H2x,…, Hrx)],

where “x” refers to the individual variable ranging over a universe of dis-
course that specifies the type of entities for which the law is stated. “F = fk

(H1, H2,…, Hr)” stands for an equation expressing the functional relation be-

tween quantity F and quantities H1, H2,…, Hr (r ≥ 1). “Cmodi = 0” expresses

the idealizing assumption that a quantity, expressed as “Cmodi” (i ≥ 1), is
equal to zero. The idealization assumptions as expressed in (1) enable us to
understand the relation between the equation with the structure of “F = fk

(H1, H2,…, Hr)” and the type of entities for which the scientific law with the
structure of (1) is stated — namely, that the equation holds for idealized types
of entities.14

As I will show, once this quantity is at work (i.e., different from zero), it
modifies F; hence, I label it a modification condition. The symbol “k” ex-
presses the number of idealizing assumptions, so that “L(k)” stands for the
scientific law L under k idealizing assumptions.

Based on the structure (1), it is possible to reconstruct the structure of the
scientific laws in which the wave equations stated by Schrödinger are embe-
ded; I start with structures for the wave equations (5-M1), (18′′-M2), (22-M2),
and (29-M2). As I will show, based on structure (1), it is also possible to re-
construct the methods by which the laws with their respective wave equations
are derived in the four Mitteilungen.

The law for (5-M1) is stated for hydrogen atoms (the range of x) under the
following three idealizations: v/c = 0, where v is the velocity of the electron
and c is the velocity of light; no external force is acting on the atom, FE = 0;
and the potential V = – e2/r is not an explicit function of time, ∂V/∂t = 0.15

The law is expressed as

(2) L(3) : ∀x [
vx

c
= 0 & FEx = 0 & 

Vx

tx

∂
∂

= 0 → ∆ψx + 
2

2

2
0].

mx e x
E x

rxK
ψ

 
+ = 

 

The law in which (18′′-M2) is embedded is stated for entities (the range of x)
whose trajectories have dimensions and radii of curvature that are compara-

                                                   

14 Paradigmatic examples of such idealized entities in physics include the ideal (mathe-
matical) pendulum in classical mechanics and the ideal gas in thermodynamics.

15 Here and in the following reconstructions of scientific laws, the symbol “x” stands for
the individual variable and should not be confused with the physical coordinate.
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ble to a certain wavelength. Its three idealizations are the same as those in
(2). We thus obtain the following:

(3) L(3) : ∀x[
vx

c
= 0 & FEx = 0 & 

Vx

tx

∂
∂

= 0 → divgradψx + 
2

2

8

h

π
(Ex – Vx)ψx = 0].

It is readily seen that two elements of (2) underwent a transformation
when we moved to (3). Compared to the type of entities for which (2) is
stated (hydrogen atoms), the type of entities invoked in (3) is specified in
such a new manner that it covers other types of entities besides hydrogen at-
oms. So the transformation of the type of entities that took place in the
movement from (2) to (3) is that of a generalization.

A generalization can also be discerned in the transformation of the equa-
tion in (3) into the equation in (2). The potential V in law (3) covers not only
the potential — e2/r given in law (2) but also other types of potentials. Thus,
the derivation of law (3) from law (2) is produced by the method of generali-
zation.

For Planck’s oscillator with equation (22-M2), the structure of the scien-
tific law is as follows:

(4) L(3) : ∀x [
vx

c
= 0 & Mx = 0 & Dx = 0 → 

2 2

2 2

d 8

d

x

q x h

ψ π+ (Ex –

2π 2v0xq2x)ψx = 0].

x ranges over the set of oscillating objects whose radii of curvature of their
trajectories and the dimensions of their trajectories are comparable to a cer-
tain wavelength. Three idealizations involved here are: v/c = 0; the external
magnetic field is equal to zero, M = 0; and the 2nd, .., Nth dimension of the os-
cillator is equal to zero, D = 0.

Finally, the scientific law for the rotator with a fixed axis is as follows:

(5) L(3) : ∀x [
vx

c
= 0 & Mx = 0 & CDx = 0 → 

2 2

2 2

1 d 8

d

x
x

Ax x h

ψ π ψ
ϕ

+  = 0].

x ranges over the set of rotating objects whose radii of curvature of their tra-
jectories and the dimensions of their trajectories are comparable to a certain
wavelength. The idealizations are: v/c = 0; the external magnetic field is
equal to zero, M = 0; and the change of direction of its axis is equal to zero,
CD = 0.

By comparing the structure of laws (4) and (5) with that of (3), one can
discover yet another method of derivation of scientific laws being at work in
the second Mitteilung — namely, the method of applying a scientific law to
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particular types of entities.16 What underlies this method is a bidirectional
movement. One movement is the thought-transformation of the types of en-
tities for which the derived laws are to be stated so that they can be sub-
sumed under the type of entities for which the applied law is fulfilled. In the
case of the oscillator and the rotator, both these types of entities are trans-
formed in the mind into entities that already satisfy the condition represented
above as s ≈ λk and R ≈ λk. The other movement, going in the opposite direc-
tion, is the adjustment of the equation from the applied law to the specific
features of the entities for which the respective derived laws are to be stated.
In the case of entities for which laws (4) and (5) are stated, it is the transfor-
mation of equation (18′′-M2) embedded in law (3).17

A reconstruction of the structure of scientific laws in terms of (1) reveals
yet another method that is used in the Mitteilungen: the method of explana-
tion. This method consists in gradually abolishing the idealizations — a process
called gradual concretization — and modifying of the functional dependence
of quantity F.

The modification conditions play a central role in the process of explanation
by gradual concretization. Once these conditions are at work, the idealiza-
tions are cancelled — symbolized as “Cmodi ≠ 0” — they gradually modify the
functional dependence between the quantities H1, H2,…, Hr and the quantity
F as it is initially stated in the scientific law with the structure of L(k). One de-
rives a sequence of different functional dependencies, fk–1,…, f0, between the
quantities H1, H2,…, Hr and the quantity F thereby yielding different compu-
tations of F. The result is a derivation of a sequence of scientific laws that can
be expressed as follows:

L(k–1): (x)[Cmod1x ≠ 0 & Cmod2x = 0 & … & Cmodkx = 0 → Fx =
fk–1(H1x,…, Hrx, Cmod1x)]

(6) ..........................................................................................................

L(0): (x)[Cmod1x ≠ 0 & … & Cmodkx ≠ 0 → Fx = f0(H1x,…, Hrx,
Cmod1x, Cmodkx)].

A specific feature of explanation by gradual concretization is that, in the
course of it, the type of entities for which these laws are stated is constant;
that is, the range of x for the laws in the sequence L(k), L(k-1),…, L(0) remains
the same. This, as I will show now, holds for the derivation of the law in
which the wave equation from the third Mitteilung is embedded.
                                                   

16 On the crucial role of applications in the development of quantum mechanics into
a finished canonical theory, see (James, Joas 2015).

17 On subsumption in Nowak’s approach to scientific explanation, see, e.g., (Hanzel
2007; 2015: 11-13).
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2.2. THE DERIVATION OF SCIENTIFIC LAWS IN MITTEILUNG 3 AND MITTEILUNG 4

In the third Mitteilung, which is central from the point of view of the
structure of scientific laws and the method of explanation described above,
Schrödinger takes up the Stark-effect for the hydrogen atom — that is, the
shifting and splitting of its spectral lines due to the impact of an external
electric field with the force FEE acting on the electron with charge e in the
positive direction of axis z. The starting point is equation (5-M1) for the un-
perturbed hydrogen atom with its corresponding scientific law with the
structure of L(3), stated above as (2). The wave equation that Schrödinger
states for the Stark-effect is as follows:18

(32-M3)
2 2

2

8
* 0.

m e
E eF

rh

πψ ψ
 

∆ + + − = 
 

Thus, Schrödinger cancels the idealization stated in L(2) that no external
forces act on the atom, FE ≠ 0. Yet, at the same time, he introduces another
idealization, namely — that no external magnetic force FEM is acting on the
hydrogen atom. This equation should hold under the idealizations: v/c = 0
and FEM = 0, while already taking into account the impact of the modification
condition that an external electric force is present, FEE ≠ 0. The scientific law
in which (32-M3) is embedded is as follows:

(7) L(3) : ∀x [
vx

c
= 0 & F*x = 0 & 

Vx

tx

∂
∂

= 0 & FEEx ≠ 0 → ∆ψx +

2 2

2

8
* ] 0.

mx e x
Ex exF x x

rxh

π ψ
 

+ − = 
 

By comparing the structure of law (7) with that of (2), it becomes appar-
ent that the former is derived from the latter by the method of gradual con-
cretization sketched above, but at the same time transcends the abstract
scheme (5) because, in the course of the derivation, while some idealizations
are being cancelled, new idealizations are also being introduced.

The derivation of scientific laws by the method of application and the
method of generalization can also be identified in the fourth Mitteilung.
Here, Schrödinger restates equation (18′′-M2) as:

(1-M4)
2

2 2

2( )
0.

E V

E t

ψψ − ∂∆ − =
∂

                                                   

18 F*z stands for the action of an external electric force exerted on the electron along
axis z; my notation for the external electric force differs slightly from that of Schrödinger.
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But even if he regards this equation as part of the new foundation of me-
chanics, he voices two objections against it. The first objection is that it does
not state the law of change (Veränderungsgesetz) for ψ generally enough.
The problem here is that (1-M4) is valid only for processes that depend on
time solely via a certain periodic parameter. This then determines the type of
the function ψ for which this equation is (for a definite value of E) valid — it
should be ψ ≈ e±2πiE/h.

The second objection to (1-M4) pertains to the supposition on which it
was based — namely, that the potential V should not be an explicit function of
time, or, in other words, that ∂V/∂t = 0 should hold. This idealization has to
be given up because, according to Schrödinger (1926e: 110),

There exists, however, an urgent need to extend the theory to nonconservative
systems, because only in this way it is possible to study the behavior of the system
under the impact of pregiven external forces, for example of a light wave or of another
atom flying past.

Schrödinger tries to remedy this by deriving the following equation:19

(4′′-M4)
2

2

8 4
0.

i
V

h th

π π ψψ ψ ∂∆ − =
∂

∓

The derivation of this wave equation enables Schrödinger to consider a
special type of a time-dependent potential — namely, that a time-independent
potential V0 is disturbed by a small function of time (and the coordinates). He
introduces the formula:

(5-M4) V = V0(x) + r(x, t).

The disturbance r(x, t) he considers is an oscillating variable field; the fol-
lowing holds for the case of linearly polarized monochromatic light with fre-
quency ν:

(5′-M4) V = V0(x) + A(x)cos2πvt.

Schrödinger then substitutes this formula into the equation (4′′-M4) and de-
rives the equation:

(7-M4)
2

02

8 4
( ( )cos2 ) 0.

i
V A x vt

h th

π π ψψ π ψ ∂∆ − + =
∂

∓

                                                   

19 Like in the second Mitteilung, the operator ∆ has to be understood in the context of a
non-Euclidean metric.
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From the methodological point of view, by applying the reconstruction of
the structure of scientific laws and of the method of application, it is possible
to understand the derivation of equation (7-M4) from (4′′-M4) as part of the
derivation of a scientific law from another scientific law. The latter has the
structure:

(8) L(1) : ∀x [
vx

c
= 0 & FEx ≠ 0 & 

Vx

tx

∂
∂

≠ 0 → 
2

2

8 4
0],

i x
x Vx x

h txh

π π ψψ ψ ∂∆ − =
∂

∓

where x ranges over a set of objects whose radii of curvature of their trajecto-
ries and the dimensions of their trajectories are comparable to a certain
wavelength.

From it one derives, as an application, the law with the embedded equa-
tion (7-M4):20

(9) L(1) : ∀x[
vx

c
= 0 & FEx ≠ 0 & 

Vx

tx

∂
∂

≠ 0 →

2

02

8
( cos2 )x V x Ax vxtx x

h

πψ π ψ∆ − + 4
0].

i x

h tx

π ψ∂ =
∂

∓

Law (8) is a two-fold generalization of law (2). The first generalization
concerns to the type of entities involved — (2) applies to hydrogen atoms
whereas (8) applies to a set of objects whose radii of curvature of their tra-
jectories and the dimensions of their trajectories are comparable to a certain
wavelength. The second generalization concerns the type of the ψ function —
while, in (2), the ψ function depends on time just via factor e2πivt while, in (8),
it is already inherently dependent on time.

Finally, let me address another generalization, which Schrödinger initially
labels as the “relativistic-magnetic generalization of the basic equation
(4′′[-M4])” (1926e: 132). After deriving this generalization, he adds that it is
“the conjectured relativistic generalization of (4′′[-M4]) for the case of a sin-
gle electron” (1926e: 133-134; emphasis added), which he views as directly
applicable to the hydrogen atom.

Thus, the law in which that generalized equation is embedded is stated for
the hydrogen atom (the range of x), where the velocity of its electron is v ≈ c
and so it is acted upon by an external electromagnetic field; the conditions
represented in (7) as FEE and FEM are now supposed to be both at work, FEE ≠ 0
and FEM ≠ 0. The scientific law is as follows:21

                                                   

20 In order not to confuse the coordinate-variable with the individual variable, I elimi-
nate the symbol for the former when using the symbol “A” for the amplitude.

21 V and A are the electromagnetic potentials of the external electromagnetic field at the
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(10) L(0) : ∀x[vx ≈ c & FEMx ≠ 0 → 
2

2 2

1 4
(

x ie Vx x

hc c txc t x

ψ π ψ∂ ∂
∂∂

∓ + Axgradψx)

+
2 2

2 2

4 e

h c

π
(V2x – U2x – 

2 2

2
) 0.

m xc x
x

e x
ψ =

By comparing law (10) with law (8) we discover that condition FE ≠ 0 in
(8) is bifurcated into two conditions given in (10): FEE ≠ 0 and FEM ≠ 0.

The generalization involved in the movement from (8) to (10) pertains to
the generalization of the equation, but not to the type of entities. While the
former law is stated for x that ranges over a set of entities that fulfill the con-
dition symbolized above as s ≈ λk and R ≈ λk, the latter law is stated for x that
ranges only over a subset of that set — namely, hydrogen atoms. Law (10) can
also be viewed as a generalization of law (2), but here both these laws are
stated for the same type of entities — hydrogen atoms.

CONCLUSION

Drawing on the reconstruction presented here of the structure of scientific
laws combined with the reconstruction of the methods of generalization, ap-
plication, and explanation based on scientific laws, Figure 2 indicates the
methods that are foundational to Schrödinger’s thought movements between
the wave-equations and their corresponding laws in the framework of the re-
spective Mitteilung and between Mitteilungen.22

                                                   

location of the electron. The symbols of operators “∆” and “grad” have a three-dimensional
Euclidean meaning.

22 The lower number refers to the respective scientific law as reconstructed above; the
dotted arrows indicate the application of the law (3) to the rigid rotator with fixed axis and
to the nonrigid rotator.
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Fig. 2. Methods used by Schrödinger in Mitteilungen 1-4

Based on the presented analysis of the four Mitteilungen, it is possible to
draw the following methodological conclusions.

First, the three elements regularly reappearing in the Mitteilungen —
namely, the wave equation, the type of entities the wave equation should ap-
ply to, and the idealizations that this type of entities should fulfill are the ba-
sis for the methods of generalization, application, and explanation by which
Schrödinger built these Mitteilungen. These methods serve to transform
some or all of these elements.

Second, these three methods enabled Schrödinger to derive, as shown in
Figure 2, a branching sequence of scientific laws, where the starting point of
this sequence is law (2) for the hydrogen atom stated in the first Mitteilung.
Thus, a reconstruction of these three methods can be viewed as a methodo-
logical explication of Schrödinger’s term “generalization,” which he employed
at the beginning of the first Mitteilung, where he claimed that the “new con-
ception is capable of generalization” (1926a: 361).
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